
,

NathSlarCanpukzrslnc
2547 Ninth Street

Berkeley, Ca, 94710

North Star
System Software Manual

Copyright © 1979, North star Computers, Inc.

SOFT·DOC
Revision 2.1



\

>

•

PREFACE

This manual describes all the system software that is included
with a North Star HORIZON computer or Micro Disk System. Use of
the North Star Disk Operating System (DOS), Monitor, and BASIC
are described in three of the major sections of this manual. The
first major section, GETTING STARTED, describes the initial
procedure required to begin using the North Star software.

The table of contents for all the major sections of this manual
follows this preface. Two indexes for the BASIC section appear
at the very end of the manual. If you receive errata sheets for
this manual, be sure to incorporate all the corrections into the
manual, or attach the errata sheets to the manual.

This manual applies to North Star system software diskettes
stamped "RELEASE 5" or "RELEASE S.X" where X is a digit
indicating the update number. If you are working with earlier
releases of North Star software, you should order a copy of the
most recent release to take full advantage of all the features
described in this manual. This manual covers both single-density
and double-density versions of the North Star software.
Differences between single- and double- density versions are
noted in the text.

Other software available for your North Star system is not
described here. For example, North Star Pascal and the North
Star Software Exchange diskettes are not described here. Consult
a North Star Catalog, Newsletter, or your local computer dealer
for up-to-date descriptions of available North Star software.

Every effort has been made to ensure the accuracy of the material
presented here. Nevertheless, experience shows that some textual
errors always go undetected. If you find any errors, or have
some suggestions on how to improve this manual, please contact
North Star at the following address:

NORTH STAR COMPUTERS, INC.
ATTN SOFTWARE DOCUMENTATION
2547 NINTH STREET
BERKELEY CA 94710

- NORTH STAR SYSTEM SOFTWARE MANUAL -



1.

TABLE OF CONTENTS

GETTING STARTED

INTRODUCTION
A. DISK DRIVES AND DISKETTES
B. LIST OF SYSTEM SOFTWARE PROGRAMS
C. RAM ALLOCATION
D. PERSONALIZING THE DOS FOR INPUT/OUTPUT
E. SYSTEM START-UP
F. PERSONALIZING A NEW DISKETTE FROM AND OLD DISKETTE
G. INSTALLING THE INPUT/OUTPUT ROUTINES
H. HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES
I. CREATING THE WORKING DISKETTE
J. HARDWARE TESTING

1

II. THE NORTH STAR DISK OPERATING SYSTEM (DOS)

INTRODUCTION
A. ABOUT FILES
B. COMMANDS
C. SYSTEM START-UP
D. DISK ERRORS
E. DOS LIBRARY ROUTINES
F. ADDITIONAL DOS PERSONALIZATION
G. DOS ENTRY POINTS AND FLAGS
H. UTILITIES

DT (DISK TEST)
CF (COpy FILE)
CD (COPY DISK)
CO (COMPACT)

III. THE NORTH STAR MONITOR

INTRODUCTION
A. COMMAND FORMAT
B. COMMANDS
C. HARDWARE REQUIREMENTS
D. PERSONALIZING THE MONITOR
E. EXAMPLE

- TABLE OF CONTENTS -



•,
•
,

)

·•

•

,

.-

·,

I

TABLE OF CONTENTS (Continued)

IV. THE NORTH STAR BASIC SYSTEM

A. INTRODUCTION

B. BECOMING FAMILIAR WITH BASIC
1. LOADING BASIC B-l
2. COMMUNICATING WITH BASIC ..••.••••••• B-2
3. ENTERING A BASIC PROGRAM .•••••••••.. B-6
4. SOME BASIC CONCEPTS •.•••.•.•••••••.• B-9

C. COMMANDS
1. PROGRAM DEVELOPMENT AND MAINTENANCE

LIST C-l
DEL •••••••••••..•••••••••••....••••• C-2
SCR ••.••.••.....................••••C- 3
REN ••••••••••••...••••••••••••.••••• C-4
AUTO •••••••••••••••••••••••••••••••• C-6

2. PROGRAM MAINTENANCE ON DISK
CAT ...•.....••••.................... C-7
SAVE ••••••••.••.•...••.•••••••••...• C-8
NSAVE •••••••.•••••••••••••••••..•••• C-9
LOAD •.............••...•...•.....•. C-10
APPEND ...........•.................C-ll

3. EXECUTION CONTROL
RUN ••••••••....•••••••••...••••••••C-12
CONTROL-C, THE PANIC BUTTON •••.•••• C-13
CONT C-15

4. MISCELLANEOUS COMMANDS
PSIZE C-16
MEMSET •••••••••...••••••••••••..••• C-l 7
LINE (STATEMENT) ••••..•••••...••••• C-18
ByE .••••••••••••••....•••••••••..• . C-2~

D. USING NUMBERS
E. USING ARRAYS
F. USING STRINGS
G. THREE IMPORTANT STATEMENTS

DIM ••....•••••••••.••....••••••••..••••G-l
REM •.•••••••••...•••••••••••.•••••••..•G-3
LET •.•.•••••••••••••••••..••••••••.••••G-4

H. INPUT AND OUTPUT
1. STATEMENT: PRINT •••••••••••••...•••• H-1
2. FORMATTED PRINTING ••••.••••••..••••• H-3
3. STATEMENT: INPUT •••.••••••••••.••••• H-9

STATEMENT: INPUT1 .••••••••••••••••• H-11
4. MULTIPLE I/O DEVICES ••••••••••••••• H-12

- TABLE OF CONTENTS -

2



TABLE OF CONTENTS (Continued) 3

IV. THE NORTH STAR BASIC SYSTEM (Continued)

I. STORING DATA WITHIN THE PROGRAM TEXT
STATEMENTS:
DATA ..•.
READ ....
RESTORE.

• I-I
.1-2
.1-4

.J-2

.J-3

.J-4

.J-S

.J-6•

•

FLOW•••....... J-I

ELSE.

••

THEN
GOTO.

PROGRAM CONTROL
1. EXECUTION AND CONTROL
2. STATEMENTS:

GOTO. .. ..
IF
ON .•
STOP.
END ..

J.

3. THE FOR-NEXT LOOP
DISCUSSION •.......
STATEMENTS:
FOR •.
NEXT.
EXIT.

• •

.. ... J-7

.J-I2

.J-I3

.J-14

............................................
4. SUBROUTINES

DISCUSSION.
STATEMENTS:
GOSUB .•
RETURN .•

• .. "" ....

.J-IS

.J-I?

.J-I8

-.

K. FUNCTIONS
1. DISCUSSION

BUILT-IN FUNCTIONS.
USER-FUNCTIONS ....•. ........

.K-I

.K-8

2. STATEMENTS:
DEF ........
RETURN.
FNEND •.

• • •

•

.K-I2

.K-I3

.K-14

..............................................
L. DATA FILES

1. DISCUSSION.
2. STATEMENTS:

CREATE .•
DESTROY.
OPEN ..•
CLOSE .••
READ' •.•
WRITE' ••

• •
•

•

•
• •

•
.. .. .. .. .. ..

•

• ••
•

• ••

• .L-I

.L-I0

.L-ll

.L-I2

.L-I3

.L-14

.L-I6

- TABLE OF CONTENTS -



·i

,
!

•I

•

i

•,
\
• ~,

TABLE OF CONTENTS (Continued)

IV. THE NORTH STAR BASIC SYSTEM (Continued)

M. ADVANCED FEATURES
1. TWO ADVANCED STATEMENTS

FILL M-l
OUT .••••.••••.•••••••••••••••••••••• M-3

2. MACHINE LANGUAGE SUBROUTINES ••••.... M-4
3. AUTOMATIC PROGRAM SEQUENCING ••••.... M-6

DISCUSSION ..•.......••....••••....•. M-6
STATEMENT: CHAIN •••••••••••••••••••• M-8

4. ERROR TRAPPING AND RECOVERY
DISCUSSION M-9
STATEMENT: ERRSET ..........••••••..M-11

5. THE LINE EDITOR............•••••...M-13

N. COMPATIBILITY WITH OTHER BASICS
1. STRING HANDLING ...........••••......N-1
2. INPUT TRANSLATION ...•.....••.•......N-2
3. NORTH STAR'S BCD ARITHMETIC •••...... N-2
4. IF ... THEN EVALUATION ....•••••.....N-3

O. MISCELLANEOUS TOPICS
1. SPECIAL ENTRY POINTS ..•...•••••....•O-1
2. PERSONALIZING BASIC .......••••.•...•O-2
3. NON-STANDARD VERSIONS OF BASIC •••.. O-12

APPENDICES:

1. SAMPLE PROGRAMS
2. ERROR MESSAGES
3. IMPLEMENTATION NOTES
4. DECIMAL-HEX-BINARY-ASCII CONVERSION TABLE
5. BASIC TOPICS INDEX
6. BASIC KEYWORD INDEX

- TABLE OF CONTENTS -

4



GETTING STARTED

INTRODUCTION

This part of the manual provides the information and procedures
required to make initial use of the North Star system software.
This material should be referenced at any of the following times:

A. You are about to use an assembled HORIZON computer or MICRO
DISK System for the first time.

B. You have just finished assembling and checking a HORIZON or
MICRO DISK System from kit.

C. You are about to use a new release system software diskette
for the first time.

The sections that follow provide:

A. Information on the disk drives and how to use them.

B. Itemization of the system software provided with North Star
disk systems.

C. Procedures for personalizing the DOS software to make
possible input/output communication with your computer's
console terminal.

D. Procedures for testing your computer's RAM memory and disk
system for correct and reliable operation.

These sections should be read carefully and the specified
procedures should be followed in the order given.



i

(

I

I
i
I

<
I,,
i

DISK DRIVES AND DISKETTES

Your North Star HORIZON or MICRO DISK System equipped computer
includes capability for storing large amounts of data and program
information on "floppy" diskettes. There may be up to four
floppy disk drives connected to your computer through one disk
controller board (only three drives for single density
controllers). Looking at the front of a disk drive, you will see
a small red LED indicator lamp, a slot running through the center
of the face, and hinged door at the center. perpendicular to the
slot. When the door is closed, no diskette may be inserted into
the disk drive. Opening the door permits the withdrawal of the
diskette and insertion, through the slot, of another diskette.
When the LED light is on, it indicates that that drive is active.
The disk system incorporates an automatic shut off feature which
will turn off the drive motor(s) when not in use to save wear on
both diskettes and disk drives.

DESCRIPTION OF DISKETTES

A diskette is a magnetically coated, thin plastic disk which is
permanently sealed within a square protective jacket. The label
on the jacket should be in the upper left corner as you are
looking at the diskette. There are three holes in the front face
of the jacket. The large hole in the middle allows the disk
drive spindle to clamp directly onto the diskette in order to
spin it around. Data is stored onto and retrieved from diskette
much as with a phonograph record. except that. for a diskette,
the needle is a magnetic record/playback head. The small, round
hole to the lower right of the diskette is called the sector
detect hole and is of no importance to this discussion. The
large oblong hole at the bottom and the corresponding hole on the
flip side expose the diSkette's magnetic surface for the
record/playback heads. The little square notch in the upper
right corner of the diskette is a write protect notch. If you
cover this notch with an adhesive tab, then the disk drive will
be inhibited from writing over the information stored on the
diskette. It will be read-only until the write protect tab is
removed at which time both reading and writing of the diskette
will be possible.

INSERTION OF DISKE~TES

When you insert the diskette into the disk drive, be sure that
you are holding the label edge of the diskette. and that it
slides all the way in. oblong hole first, with the label facing
away from the drive's LED indicator. In a HORIZON, the write
protect notch should be at the top. In a horizontally oriented
disk drive the notch should be at the left. After the diskette
is inserted, make sure the door on the drive is locked into the
closed position before you attempt to use the diskette.

.
I

- GETTING STARTED - A-l



DISK DRIVES AND DISKETTES (Continued)

CARE OF DISKETTES

Diskettes are delicate and should be handled with great care.
Always observe the following rules in the handling and storing of
diskettes.

1,
"

1. Never directly touch the magnetic surfaces of a diskette.

2. Never bend or fold a diskette.

3. Keep a diskette in its protective envelope when not in use.

4. Never expose a diskette to heat. X-ray or other radiation,
magnetic fields, moisture, or dust.

,

,
1

,

- GETTING STARTED - A-2

\



;

LIST OF SYSTEM SOFTWARE PROGRAMS

The following programs are included on a North Star system
'-/ software diskette:

DOS

CO

,,
CD

CF

DT

BASIC

The Disk Operating System program.

Utility program for compacting a diskette and optionally
converting a diskette to double density.

Copy diskette utility program.

Copy file utility program.

Disk test utility program.

The BASIC language system program with software
arithmetic.

FPBASIC The BASIC language system program set up for use with
the hardware floating point board.

M2D00

M5700

M6700

M0000

MF400

The Monitor program with origin 2D~0 (hex). (M2A~~ if
single density diskette)

The Monitor ~[ogram with origin 5700 (hex) and built-in
HORIZON input/output routines.

The Monitor program with origin 6700(hex).

The Monitor program with origin ~.

The Monitor program with origin F4~~ (hex).

,
- GETTING STARTED - B-1



RAM ALLOCATION

The following table shows how the 64K byte RAM address space is
allocated for the standard version system software and hardware.
All addresses are given in hexadecimal notation. The minimum
memory configuration requires 16K of RAM in the address range
2000-5FFF (hex).

SINGLE DENSITY DOUBLE DENSITY PROGRAMS

2000-29FF 2000-2CFF DOS

2A00-5"FF * 2D00-5FFF * BASIC, FPBASIC

°A00-31FF 2D00-34FF Monitor M2A00. M2D00

2A00-3AFF 2D00-47"F utilities CO, CD, CF. DT

5700-5FFF 5700-5FFF Monitor M5700

6700-6EFF 6700-6EFF Monitor M6700

E800-EBFF E800-EBFF Disk Controller

EFF0-EFFF ** EFF0-EFFF ** Floating Point Board

F400-FBFF F400-FBFF Monitor MF400

* -=1Ttlh~e!§ju~PEP=e~[~1~i~m~ir.t:-,o~fffB",ArS~IIcnIc1alnTJbJe[is"e~t~~btYo't~h~e~u~s~e,"[~W:'l=-':oth~~t~h~e_ MEMSET command. It is initially set to 5FFF. ~

** Some floating point boards are configured to use DFF0-DFFF.

- GETTING STARTED - C-l



!,

PERSONALIZING THE DOS FOR INPUT/OUTPUT

Before the North Star system software can be used. input/output
~ routines may have to be installed in the DOS program to allow

communication of the DOS with the console terminal of your
computer system. This is called "personalizing" the input/output
routines of the DOS. Just exactly what steps need to be taken
depends on the combination of software and hardware to be used in
your system.

A. You have a HORIZON computer and the console terminal is
connected to the standard serial interface. In this case,
the DOS on the system software diskette supplied with the
HORIZON is already personalized and ready to use. Skip to
the SYSTEM START-UP section. After the system is
successfully started, proceed directly to the CREATING THE
WORKING DISKETTE section.

(

8.

c.

You have a HORIZON or other computer and you have a system
software diskette which has specific input/output routines
installed that match the input/output configuration of your
hardware. You are ready to proceed without the need for any
additional personalizing of the diskette. Skip to the
SYSTEM START-UP section. After the system is successfully
started, proceed directly to the CREATING THE WORKING
DISKETTE section. Personalized system software diskettes
for the more common input/output configuations are
available. Consult the North Star Product Catalog and your
dealer.

You have an unpersonalized system software diskette but also
have a different system software diskette which is already
personalized for your system. This situation might occur if
you have just received a new release of the system software
(unpersonalized) and wish to start using it on your already
running North Star system. Proceed directly to the
PERSONALIZING A NEW DISKETTE FROM AN OLD DISKETTE section.

D. You have an unpersonalized system software diskette and will
install the input/output routines yourself. The MICRO DISK
system is supplied with such an unpersonalized diskette.
This personalization procedure is not possible unless your
computer system includes some capability, such as a front
panel or ROM monitor, for loading the input/ouput routines
into RAM memory. Furthermore, this procedure is not simple.
It requires an understanding of the computer's input/output
interfaces, hexadecimal numbers, and machine language
programming. If all these requirements are met, then
proceed directly to the INSTALLING INPUT/OUTPUT ROUTINES
section.

- GETTING STARTED - 0-1



PERSONALIZING THE DOS FOR INPUT/OUTPUT (Continued)

E. You have a HORIZON computer but will not use the standard
serial interface for connecting your console terminal. In
this case follow the procedure described in step D.

Also, if at any time you wish to add input/output devices to the
system or modify the existing routines, you must follow the
procedure described in step D.

•

- GETTING STARTED - 0-2



:

,,

,

,

•

r

SYS1'EM START-UP

Start-up of a HORIZON computer is very simple. First, load a
system software diskette into drive #1. Then, turn on the
computer power. The HORIZON will automatically start the disk
bootstrap program which will turn on the disk drive and load the
DOS into RAM from the disk. If the computer hardware is properly
configured, then the system should display a DOS command prompt
(* or +) and the system will be ready to use. To do a system
start-up when the power is already on, depress and release the
reset switch.

In a computer system other than a HORIZON which has a North Star
MICRO DISK System installed in it, start-up the system as
follows. First, with no diskette loaded into any disk drives,
turn on the computer and disk drive power. In some computer
systems, turning the power on or off while a diskette is loaded
into a drive may damage the information stored on the diskette.
With the power on, load the system software diskette (already
personalized) in drive #1. and then cause the computer to start
executing at address E800(hex). A front panel, ROM monitor, or
auto-jump feature can be used to start the computer at this
address. At this point the DOS software should load as described
above.

If after performing the system start-up sequence, you don't get
any output on you terminal, it may be because the baud rate
setting of the terminal does not match the baud rate setting of
the serial interface. or it may be because of some other fault in
the hardware configuration (such as improperly addressed RAM
boards). or it may be some problem with the input/output
personalization routines. All these possibilities should be
carefully examined. If typing a key causes that character to be
displayed twice. it is probably because the terminal is in half
duplex mode rather than full duplex mode. If some computer
operations, such as the DOS list command (L1), terminate-

~--prematurely, this may be a result of an incorrectly wr-I£ten
- control-C input/output routine. Other problems-may-be-a result

of typing lower-case characters-for commands instead of upper
case.

- GETTING STARTED - E-l



PERSONALIZING A NEW DISKETTE FROM AN OLD DISKETTE

If it is desired to personalize a new system software diskette
using the same personalized input/ouput routines that already
exist on an old diskette, then the following procedure can be
used to incorporate the old routines into the new software. The
new diskette may be unpersonalized or it may have in~ut/output

routines that you wish to replace. The following listing gives
the DOS and Monitor commands which should be exactly followed to
copy successfully the input/output routines. The DOS command

rom t will be * instead of + if a sin Ie densit DOS is used.
The computer must include 16K of RAM starting at ex. It
is assumed that the system software has standard origin at
2000 (hex).

Using an old diskette, do a system start-up sequence, then:

+LF DOS 40001 Load copy of old DOS

Next, remove the old diskette and insert a new diskette in drive #1.

+LF DOS 5000 ,
+GO M2D00 "DO

>MM 4900,100 5$0,!-

>MM 400D,C 500D j

Load copy of new DOS
GO M2A00'if new diskette is single density
Move I/O routines from old to new DOS

(See below.)
Move jumps from old to new DOS -,

The third command in the above sequence will vary, depending upon
the nature of the source and destination diskettes. To transfer
old I/O personalization from Release 1, 2, 3, or 4 to Release 5
dual-density DOS. use:

>MM 4900,100 5800

as above.
Release 5

To transfer
DOS, use:

I/O personalization between copies of the

>MM 4800,100 5800

To transfer I/O personalization between copies of single-density
DOS. Release 4 or earlier, use:

>MM 4900,100 5900

If the old DOS has additional personalization, copy it now.

A copy of the new DOS with the old input/ouput routines installed
now resides at address 5000(hex) in RAM. Proceed to the CREATING
THE WORKING DISKETTE section for directions on how to make a
diskette which includes this DOS.

- GETTING STARTED - F-1



•,

<,

,
t

,

,

INSTALLING THE INPUT/OUTPUT ROUTINES

The DOS is designed to be able to interface to any conceivable
terminal input/output configuration. There are four routines
required by the DOS: character input (eIN). character output
(COUT). control-C detect (CONTe), and terminal initialization
(TINIT). In the standard version of the DOS, the input/output
routines are located in the 256 byte region from 29~~ to
29FF (hex).

CIN

The purpose of eIN is to obtain a single character of input from
an input device and t(),__r.etl:!..~rl._~~_e value of that character in the
accumulator. When erN is called, fhe accurtl'ula(or-'wII-l cont"a{n-'a:
devTce-riu~ffibei. This value. in the range 0 to 7, specifies from
which of eight possible input devices the single character of
input is to be obtained. Device 0 is always assumed to be the
console terminal. Devices 1 to 7 may be assigned to any other
input devices in the system. eIN may be written so that it
ignores the device number in the accumulator if there is only one
input device in the system. CIN must do a RET to the calling
routine when the input character is ready in the accumulator.
The accumulator is the onl re ister which rna be modified b the

IN rout1ne. If the input routine is complex enough to require
the use of other registers, their values when eIN is called must
be saved, and then restored before eIN returns.

COUT

This routine sends a single character of output information to an
output device. The character to be output iSPfPyj~ed to_COUT in
the B-register. and·-Eh~e--~6·ti£p-uf"d'evice rlumber - is provided in the
accumulator.~ When COUT has fini~hedsendingth~outputch~~Act~~
to the appropr 1atf-ae-vIce-;-- the cha"racter-- ,ft;s."elf _ll1ust~",b~ .in the _

=
=a~cc~m~Ia:~_or'.-as. w5~11 '!-s _t:h,~ -,I:3~.re9:i..st,e~, ar;,d t.h.~ .roqt.i~e,_must~qo a.

REr",0C!c! __~~. __tn~ ,,<C:<!.~,I .~n_9,F<:>I:l!.1p,e:. NO reg 1Ster s. other than ~he
accumulator,' may De modif1ed by the action of the COUT rout1ne.

CONTC

This routine detects if a control-C has been typed on the console
terminal. No information is passed to the routine in any of the
registers, and no registers need be saved or restored by CONTC.
They are all available for unrestricted use by the routine. If a
control_-~ has _Qe~~,n._j'yP.§.gL_th~_,~r;9_Q~tll.e__ ~~hq_~";tq ~se~~ __1;.he ~.Z ero flag.
If no character has been typed or if the character typed wa&',·not
a control-C. then the Zero flag'should instead be cleared. As
soon' as £lie Zero flag is given its proper value. eONTC must do a
RET. CONTe should not wait for a character to be typed. If no
character has been typed. it should do a RET immediately after
clearing- the Zero "flag. -~---- ~,~- -------'-----~ -,,---

·!

,

,,,
,,
·,

-,
,
,,
·,

- GETTING STARTED - G-I



INSTALLING THE INPUT/OUPUT ROUTINES (Continued)

TINIT

Many terminals require a special initialization procedure to be
followed immediately after they are turned on for use. For
example, a video display controller may require that the screen
be cleared before the screen is used for the first time after
power on. Also. the interface electronics (such as the HORIZON
standard serial interface) may require initialization after
power-on or reset. The TINIT routine is called once by the DOS
right after the bootstrap load and should contain any
instructions which implement this one time initialization for all
input/output devices used in your system. Since many terminals
do not need to be initialized, you may not need to use TINIT.
TINIT may freely use all registers. without having to save Or
restore any. The TIN IT routine should do a RET when finished.

STEP BY STEP PROCEDURE

In order to personalize the DOS with input/ouput routines for
your hardware configuration, perform the following steps:

1. write your input/ouput routines carefully following all the
rules specified in the above input/output routine
descriptions and the DOS ENTRY POINTS AND FLAGS section of
the DOS part of this manual. As examples of correct
input/output routines. the following section shows the
input/ouput routines for the HORIZON.

2. Perform a system start-up sequence using the unpersonalized
system software diskette. In an unpersonalized diskette.
each of the input/ouput routines is set up to merely do a
jump to self instruction. Thus. when you first perform a
system start-up sequence, the DOS will end up in a jump to
self loop in TINIT, and the unpersonalized DOS will now be
loaded into RAM starting at address 2000(hex).

3. using the computer front panel or ROM monitor, stop the
computer and load your input/ouput routines into RAM in the
region from 2900 to 29FF(hex).

4. Once the input/output routines have been put into computer
memory. you must modify the DOS jump table so that it
contains the starting addresses of each of the routines.
This 'um table occUrs from address 200D to 20l8(hex. This
reg10n 1S 2 bytes ong. Eac succeSS1ve y e section
within it consists of an 8080/Z80 JMP instruction (C3 hex)
followed by the two byte starting address (low order byte
first) of one of the four routines. The following table
shows how the region from 200D to 20l8(hex) would be
modified to recognize CIN, COUTo CONTC. and TINIT if the
starting addresses for these routines were 2900, 2920. 2940.
and 2960(hex). respectively.

- GETTING STARTED - G-2

"



,,

, INSTALLING THE INPUT/OUPUT ROUTINES (Continued)

BEFORE

Address

2000
2010
2013
2016

Contents

C3 00 20
C3 10 20
C3 13 20
C3 16 20

AF1'ER

Address Contents

2000 C3 20 29 ,_",.. (for COOT) , " ,
2010 C3 00 29 (for CIN) , ,
2013 C3 60 29 (for TINIT) "
2016 C3 40 29 (for CONT'C) ("/71; 0

Note that
should be

if TINIT is not required. the byte at 2013(hex)
changed to a RET instruction (C9 hex).

5 •

6 •

If you used a front panel to modify the DOS, then the stack
pointer has not been changed. So continue with execution of
the new TINIT routine by causing the computer to begin
execution at address 2013(hex). If you used a ROM monitor
to modify the DOS, then the stack pointer may have been
changed but the console terminal has been initialized by the
monitor. So continue by causing the computer to begin
execution at address 2028(hex). the DOS continue entry
point. You should see a DOS command prompt (* or +) on your
terminal. If you don't, this means that the input/output
routines are faulty or a mistake was made in following the
above personalization steps.

Copy the personalized DOS at 20~0 to 5~~0(hex) by typing the
following commands:

+LF DOS 5000
+GO M2D00
>MM 200D.C 5000
>MM 2900,100,5800

GOl2A00 if single density DOS

(If the DOS at 50~0H is not Release 5 dual-density, use:

>MM 2900.100 5900

as the last command in the above sequence. replacing the one
listed.)

7. Proceed directly to the CREATING THE WORKING DISKETTE
section.

- GETTING STARTED - G-3



HORIZON PERSONALIZED INPUT/OUTPUT ROU~INES

**1/0 ROUTINES FOR S~ANDARD HORIZON COMPUTER
* IN RELEASE 4 DOS

CHECK FOR DEVICE 2 POSSIBILITY
JUMP IF PARALLEL PORT SPECIFIED

CHECK FOR DEVICE 1 POSSIBILITY
JUMP IF SECOND SERIAL PORT SPECIFIED

(STANDARD SERIAL PORT) DESIRED
INPUT FIRST SERIAL PORT STATUS
MASK INPUT STATUS BIT
LOOP IF NO CHARACTER
INPUT THE CHARACTER
MASK OFF PARITY BIT
RE~URN WITH CHARACTR IN A

2900
2900
2900
2900
2900 FE02
2902 CA2229
2905 FEU
2907 CA1629
290A
290A DB03
290C E602 ~

290E CA0A29
2911 DB02
2913 E67F
2915 C9
2916
2916 DB05
2918 E602
291A CA1629
291D DB04
291F E67F
2921 C9
2922
2922
2922 DB06
2924 E602
2926 CA2229
2929 DB00
292B F5
292C 3E30
292E D306
2930 F1
2931 E67F
2933 C9
2934
2934
2934 FE01
2936 CA4929
2939 FE02
293B CA5429
293E
293E DB03
2940 E601
2942 CA3E29
2945 78
2946 D302
2948 C9
2949 DB05
294B E6U
294D CA4929
2950 78
2951 D304
2953 C9

*
CIN CPI 2
-JZ CIN2

CPI 1
JZ CIN1

*ASSUME PORT 0
CIN0 IN 3

ANI 2
JZ CIN0
IN 2
ANI 7FH
RET

CIN1 IN 5
ANI 2
JZ CIN1
IN 4
ANI 7;'H
RET

*SAMPLE PARALLEL
CIN2 IN 6

ANI 2
JZ CIN2
IN 0
PUSH PSW
MVI A,3l1H
OUT 6
POP PSW
ANI 7FH
RET

COUT CPI 1- JZ COUT1
CPI 2
JZ COUT2

* ASSUME STANDARD
COU0 IN 3

ANI 1
JZ COU0
MOV A,B
OUT 2
RET

COUT1 IN 5
ANI 1
JZ COUT1
MOV A,B
OUT 4
RET

INPUT CODE
READ MOTHERBOARD STATUS
MASK TO GET THE PI FLAG
NO INPUT TYPED YET
READ DATA FROM KEYBOARD
SAVE THE CHARACTER

RESET PI FLAG

SECOND SERIAL PORT OUTPUT

PARALLEL OPORT OUTPUT
SERIAL PORT OUTPUT

INPUT FIRST SERIAL PORT STATUS
MASK OUTPUT STATUS BIT
LOOP IF NOT READY TO OUTPUT
MOVE CHARACTER TO A
OUTPUT THE CHARACTER

- GETTING STARTED - H-1



,,

HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES (Continued)

,

'TINIT FIRST REWRITES ALL RAM TO SET PARITY CORRECT

'NOW THAT ALL BYTES HAVE CORRECT PARITY, ENAHLE PARITY LOGIC
, (IF YOU DON'T HAVE RAM-16-A WITH PARITY, THIS IS A NOP),

, ~N~O~W,--,!IllNl!I.lI:1'I~A",L",I""Z,"E~M~O~T,gHl!E~Rl§H~0C!JA>£R",D,--,,A",N",D'-"S'"E:11':....>Ul!P~B~0l!TJJH'-"S'"Ec!:R"lI~A"'LWP:'.0!J:R!:!T:;,S'-
XRA A ZERO ACC
OUT 6 INITIALIZE MOTHERBOARD
OUT 6 EXTRA

ENABLE PARITY CODE
MEMORY BOARD OUTPUT PORT

RESET PO FLAG
CHARACTER EXPECTED IN ACC ON RETURN

INPUT SERIAL PORT STATUS
MASK INPUT STATUS BIT
SET Z-FLAG ONLY IF CHARACTER
RETURN IF NO CHARACTER TYPED
INPUT THE CHARACTER
MASK OFF PARITY BIT
SEE IF CHARACTER IS CONTROL-C
TELL SOFTwARE A CHAR wAS TYPED (OPTIONAL)
RETURN WITH Z-FLAG PROPERLY SET

OUTPUT ROUTINE
READ MOTHERBOARD STATUS

MASK TO GET THE PO FLAG
PRINTER NOT YET READY

GET CHARACTER TO ACC
OUTPUT TO PRINTER

TINU MYI A,41H
OUT 0C0H

CONTC IN 3
ANI 2
XRI 2
RNZ
IN 2
ANI 7FH
CPI 3
STC
RET

,

TIN IT LXI 8,0 PREPARE TO CYCLE THROUGH RAM
MVI D,BADDR/256 SET UP TO SKIP OISK REGION

TINKL MOY A,H MOYE CURRENT BLOCK NUMBER TO A
CMP D CHECK IF DISK BLOCK
JNZ TINCP CONTINUE IF NOT DISK BLOCK
ADI 4 ADD 1K TO RAM ADDRESS
MOY H,A PUT UPDATED ADDRESS BACK TO HL
JZ TINU MAKE SURE NOT DONE IF NON-STANDARD

TINCP MOY A,M READ HYTE FROM RAM
MOY M,A RESTORE IT WITH CORRECT PARITY
INR L INCREMENT LOW ORDER ADDRESS BYTE
JNZ TINCP LOOP IF NOT AT END OF 256 BLOCK
INR H INCREMENT BLOCK NUMBER
JZ TINU DONE IF WE ARE BACK TO ZERO
MOY A,H BLOCK NUMBER TO A
ANI 3 MASK LOW ORDER 2 BITS
JNZ TINCP CONTINUE IF NOT AT END OF 1K BLOCK
JMP TINKL BRANCH TO MAIN LOOP

'SAi'lPLE PARALLEL
COUT2 IN 6

ANI 1
JZ COUT2
MOV A,B
OUT 0
MVI A,20H
om' 6
MOV A,B
RET

2954
2954 DB06
2956 E601
2958 CA5429
295B 78
295C D300
295E 3E20
2960 D306
2962 78
2963 C9
2964
2964 DB03
2966 E602
2968 EE02
296A C0
296B DB02
296D E67F
296,' FE03
2971 37
2972 C9
2973
2973
2973
2973
2973 210000
2976 16E4
2978 7C
2979 BA
297A C28329
297D C604
297F 67
2980 CA9629
2983 7E
2984 77
2985 2C
2986 C28329
2989 24
298A CA9629
298D 7C
298E E603
2990 C28329
2993 C37829
2996
2996
2996
2996
2996 3E41
2998 D3C0
299A
299A
299A AF
299B D306
299D D306

,,

- GE'rTING STARI'ED - H-2



HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES (Continued)

299F D306 OUT 6 EXTRA
29A1 D306 OUT 6 EXTRA
29A3 3ECE MVI A,0CEH 2 Sl'OPS, 16xCLOCK, 8 BITS, NO PARI1'Y

29A5 D303 OUT 3 SEND TO FIRST SERIAL PORT
29A7 3ECE MVI A,0CEH SAME CODE AS FIRST PORT
29A9 D305 OUT 5 SECOND PORT
29AB 3E37 MVI A,37H CMD: RTS, ER, RXF, DTR, TXEN

29AD D303 OUT 3 FIRST PORT
29AF 3E37 MVI A,37H SAME CODE AS FIRST PORT
29B1 D305 OUT 5 SECOND PORT
29B3 *
29B3 *
29B3 D802 IN 2 CLEAR STANDARD SERIAL PORT INPUT BUFFER
2985 D804 IN 4 CLEAR SECOND SERIAL PORT INPUT BUFFER
2987 3E30 !~VI A,30H
2989 D306 OUT 6 RESET PI FLAG (FOR PARALLEL PORT)

2988 C9 RET
298C *

- GETTING STARTED - H-3



,,

,

,

,

CREATING THE WORKING DISKE'rTE

Before using the system software it should be copied to a
diskette other than the factory supplied system software
diskette. This diskette, called the WORKING DISKET~E, will be
the one used on a daily basis. After this procedure is finished,
the factory diskette should be retired to a safe place for
storage with the write protect tab installed. If the working
diskette should ever be accidentally destroyed, the factory
diskette can then be used to create a new working diskette.

There are two different procedures for creating the working
diskette depending on whether your computer has one or two disk
drives. The procedure with two disk drives is much simpler and
should be used if at all possible.

TWO DISK DRIVE PROCEDURE

Load the factory diskette with the write protect tab installed in
drive #1 and a blank diskette (to become the working diskette)
with no write protect tab in drive #2. Then perform the
following DOS command:

+GO CD 1 2

This will copy the complete contents of the factory diskette onto
the working diskette. If the factory diskette was already
personalized for your system. then you are done. However, if you
personalized the DOS input/output routines before coming to this
section, then the personalized DOS is at 5000(hex) in RAM and
should be copied to the working diskette with the following
command:

+SF DOS,2 5000

Now you are done and the working diskette is ready to use.

SINGLE DISK DRIVE PROCEDURE

Load the factory diskette with write protect tab installed in
drive #1 and perform the following DOS commands:

+RD 0 4000 8
+LI

Read file directory into RAM
List file directory on factory diskette

Now remove the factory diskette and load the diskette to become
the working diskette with the write protect tab removed in drive
#1 and perform the following commands:

+IN
+I'IR 0 4000 8
+LI

Initialize working diskette
Write file directory onto diskette
List file directory

,,
,

The listed file directory on the working diskette should be

- GETTING s'rARTED - I-I



CREATING THE WORKING DISKETTE (Continued)

identical to the listed file directory on the factory diskette.
If you personalized the DOS input/output routines before coming '~

to this section, then the personalized DOS is at 5000(hex) in RAM
and should be copied to the working diskette with the following
command:

+SF DOS 5000

Now. for each file on the factory diskette. perform a sequence
like the following which copies the DOS file:

Load factory diskette in drive #1
+LF DOS 2000
Load working diskette in drive #1
+SF DOS 2000

The DOS file should not be copied if a personalized DOS was
already copied to the diskette from RAM. After repeating the
above sequence once for each file. the factory diskette will be
completely copied to the working diskette. You are done and the
working diskette is ready to use.

REGULAR BACKUP PROCEDURES

It is an inescapable fact that any user of a computer will make
frequent mistakes in the instructions given to the computer.
Most of these mistakes will be easily corrected. However. a few
will cause major loss of information stored on diskettes. For
example, to cite an extreme but plausible caSe. su~pose you have
spent an entire month typing a data base into your computer and
it is stored on a single diskette. You now wish to initialize a
new diskette and type an IN command to the DOS. It is not until
the command is completed that you realize that you forgot to load
the new diskette in the disk drive and that you have just
initialized the diskette which held the results of one month's
work. This kind of disaster can be avoided by faithfully
following these two rules:

1. Always keep a write protect tab on a diskette unless you are
about to write on the diskette.

2. Always make a backup copy of any file you have just changed
in any significant way.

The copy disk and copy file utility programs make the backup
procedure easy.

Important files or diskettes should be stored in a more permanent
way. For example, a copy of the personalized working diskette
should be retired to safe storage and be recovered only if the
normal working diskette is destroyed.

- GETTING STARTED - 1-2



t
;;.,,
..
",
,

,
"

~, .......

~

..,
..

""",
;
,
;

>

HARDWARE TESTING

It is extremely important that you test the hardware of your
computer system thoroughly using the following procedure, before
using the computer for any serious work. These procedures should
identify any faults or intermittent failures in the computer's
RAM and disk system. These procedures should be repeated
regularly in order to maintain system integrity and reliability •

RAM TEST PROCEDURE

A failure of the RAM may be the cause of almost any type of
problem you may encounter while using your computer. Therefore.
frequent testing of the RAM is very important. The RAM is tested
with the TM command of the Monitor program. The test repeatedly
writes a pattern of data into the region of RAM being tested and
then reads the pattern to check that the correct pattern is
indeed in the RAM. Since the test modifies the region of RAM it
is testing, it is not possible to test the area where the test
program itself resides. Therefore, the test procedure must be
done in two steps, the first testing the last part of RAM with a
Monitor program that resides in the first part of RAM and the
second testing the first part of RAM with a Monitor program that
resides in the last part of RAM. Start by performing a system
start-up sequence and type the following command to start the
Monitor:

+GO M2D00 M2A00 if a single density diskette

....

,
..

With standard memory addressing. a computer with 16K of RAM will
have memory in the range 2000-SFFF(hex). 32K in the range 2000
9FFF(hex), and 48K in the range 2000-0FFF(hex). Test the last
part of this region with a command like the following which will
test the last BK of a 16K memory.

>TM 4000-SFFF 1

The test may run for several minutes with no apparent signs of
life on the terminal. You can determine whether or not the test
is still running by typing a control-C to stop the test. If the
test was still running, the monitor will prompt you for another
command with another (». If nothing happens when you type the
control-C, then something is wrong. If the test is allowed to
run to completion. it will print the message PASS COMPLETED on
the terminal and then start another pass. The program should be
allowed to run for several hours to perform a thorough test.

- GETTING STARTED - J-l



HARDWARE TESTING (Continued)

If in the course of its operation the test detects an error in
the memory it is testing, it will display on the terminal an
error message of the form:

XXXX Y1 READ AS zz

The numbers xxxx, 1Y, and zz are hexadecimal. They represent the
address of, the expected contents of, and the actual contents of
the byte in RAM where the error was detected. If zz is always
FF, then there may not be any RAM board addressed to the area
being tested. Another possible cause of errors is an address
conflict, for example an attempt to share the same area of memory
between a RAM board and a memory mapped device, such as the disk
controller or a floating point board, or another RAM board.
After the test has run successfully for several hours, perform
the following commands to do a similar test on the first part of
RAM:

>OS
+GO M5700
>TM 2000-3FFF 0

Return to DOS from the Monitor
Load Monitor into last part of RAM

The M570~ Monitor has its own set of input/output routines since
the RAM test will overwrite the input/output routines in the DOS
at 20e0(hex). Initially, the M5700 routines are personalized for
use with a HORIZON. If your machine has some other hardware
configuration, then the M5700 input/output routines must be
changed to match your DOS routines. See the Monitor section of
this manual for details. After the M5700 test has run
successfully for several hours, type a control-C to stop the test
and type the following command to return to the DOS.

>IL

DISK TEST PROCEDURE

In order to check for proper operation of the disk controller and
disk drive(s), a DOS disk test program (DT) has been provided.
This utility will repeatedly write a changing pattern to a
specified drive and then attempt to read it back. Refer to the
UTILITIES section of the DOS part of this manual for details on
operation of the DT utility.

If each drive in your system will pass a disk test for 15
minutes, then your disk subsystem is in good operational order.
If an error occurs, this may mean one of several things:

1. The diskette is improperly mounted, has a write protect tab,
or has a "bad spot" which will not properly record data. If
other diskettes pass the disk test, then the problem is with
the diskette.

- GETTING STARTED - J-2



·•

··

r,
>

r

;

··

··

2 •

3 •

HARDWARE TESTING (Continued)

The disk drives are improperly connected to the system. For
example. the cable connection has not been made correctly.
power is not properly applied to the drives, or the drive
configuration has not been done properly.

There is a hardware problem in the controller or drive. If
your computer memory is operational. and your copy of DOS
and DT have not been improperly modified, and the problem is
not 1 or 2 above, then there may be a hardware problem in
your disk controller or disk drive. In a multiple drive
system, you can attempt to isolate the problem by testing
both drives to determine if the problem is with an
individual drive or not.

- GETTING STARTED - J-3



North Star

DISK OPERATING SYSTEM

version 2

INTRODUCTION

The North Star DOS (Disk Operating System) was designed and
implemented by staff members of North Star Computers, Inc. for
use in conjunction with the North Star MICRO DISK SYSTEM, and
HORIZON computer system. The DOS permits a user to issue various
"commands" from a terminal for maintaining and using files on
diskette. The DOS also provides "library routines" which may be
called from user software. These library routines will primarily
be of interest to users who will be developing their own system
software, as opposed to those users who will primarily use
application systems such as BASIC.

Versions of the North Star DOS are available for both single
density and double-density North Star disk systems. The DOS for
single-density systems is different from the DOS for double
density systems. When reading this manual, if you have a single
density system, then ingore all references to double-density
capabilities.

The DOS occupies 3.25K (000 hex) bytes of RAM in double-density
systems and 2.5K t~0~~_~Qytes of RAM in singl~-density
systems, including 256 bytes of RAM for input/output routines.
No buffer area outside the DOS is required for any of the DOS
commands. The origin of the DOS is 2000(hex) in both standard
versions.

The North Star DOS is intended for use only with the North Star
MICRO DISK SYSTEM and HORIZON computer, and no license is granted
for any other use. Improved copies of the DOS, as they become
available, may be obtained for a nominal charge.

Before the DOS can be used with a specific computer
configuration, the instructions in the GETTING STARTED section of
this manual must be followed.



,.
ABOUT FILES

DISK ADDRESSES

Each diskette consists of 35 concentric TRACKS, and each track is
subdivided into 10 SECTORS. A disk sector can hold either 512
bytes of double-density information or 256 bytes of single
density information. For purposes of discussion, a FILE BLOCK is
defined to be a unit of information equal to 256 bytes. A sector
can therefore contain two file blocks in double-density, or one
file block in single-density. Every sector on the disk is
identified by a unique DISK ADDRESS - an integer from ~ through
349. For example, sector 3 of track 27 has disk address of 273.
Track" is the "outermost" track, and track 34 is the "innermost"
track.

FILES

The primary DOS function is to permit the creation, deletion and
use of files on diskettes. A file is an integral number of file
blocks of data and occupies sequential disk sectors. For
example, a particular file might occupy disk addresses 17 through
95 on a diskette loaded in drive #2. Note that files must always
begin on sector boundaries, and that double-density files must
always contain an even number of file blocks.

The first four sectors on each diskette contain a FILE DIRECTORY
which specifies a symbolic name, base address, length, type, and
data-density information for each file on that diskette. The
symbolic name may be up to 8 characters long, and may include any
characters except blank and comma. The length of a single
density file may be up to 346 blocks, and a double-density file
may extend to 692 blocks. A directory may contain as many as 64
entries in single-density and 128 entries in double-density. No
two files in a directory may have the same name, but it is
possible for files of the same name to be in directories of
diskettes loaded simultaneously on separate drives in a muliple
disk drive system.

FILE TYPES

One byte in the file directory entry for each file specifies the
"type" of the file. Depending on the specific type, additional
bytes in the entry may have special meaning. Only four of the
127 possible file types have been assigned to date:

type 0 - Default type. All new files are assigned type 0 until
explicitly changed.

type 1 - Machine language program. This file type identifies a
machine language program (object code) that may be
executed directly from the DOS with the GO command.

- NORTH STAR DOS - A-l



ABOUT FILES (Continued)

type 2 - BASIC program. This type of file is used to identify a
BASIC program that can be LOADed or SAVEd from BASIC. -/

type 3 - BASIC data file. This type of file is the standard
type for data files read and written by BASIC programs.

FILE DIRECTORY STRUCTURE

The file directory occupies disk addresses (sectors) 0 though 3.
Each block in the directory holds thirty-two (sixteen in single
density systems) l6-byte entries. The symbolic name of the entry
uses the first 8 bytes of an entry. An empty entry is an entry
with 8 blanks (20 hex). Following the symbolic name in an entry,
the disk address (2 bytes), the file size (two bytes) and the
type (1 byte) follow. The last three bytes of an entry are type
dependent. In particular, for a type 1 file (GO file), the two
bytes following the type byte contain the go-address, and for a
type 2 file (BASIC program) the byte following the type byte
specifies how many file blocks of the file actually contain valid
data.

File directory entry:

,,

bytes 0-7
bytes 8-9
bytes 10-11
byte 12
bytes 13-15

symbolic name of entry
disk address
number of blocks in file
file type (high bit is 1 if double-density)
type-dependent information

- NORTH STAR DOS - ~2



,,
,
•,

•

·,

,
I

COMMANDS

Instructions are issued to the DOS from the terminal by typing
COMMANDS. The command format is a 2-1etter mnemonic followed by
any required arguments. Arguments are separated from the command
mnemonic and from each other by a single blank. A command must
be terminated by a carriage return before the DOS takes any
action. If a typing error occurs during typing of a command, an
at-sign{@) or cantrol-N may be typed to permit re-typing of the
command. Also, an underline, left-arrow, control-Q, or control-H
may be typed to erase the previously typed character.

When a file name is required as a command argument, the disk
drive number (in a multiple drive system) may be specified by
immediately following the file name with ",1", ",2", ",3", or
",4". Drive #4 four may be specified only in double-density
systems. Otherwise, drive #1 is assumed. Some sample file names
are:

ABC TEST1234,3 BASIC,l

~,,,

··

;,
,,

·•,
·,
•·

Commands may be typed whenever the prompt character (* for
single-density DOS and + for double-density DOS) appears at the
left margin of the terminal.

LI <optional device specification> <optional drive number>

This command will list the entire contents of the directory on
the diskette loaded in the specified drive. If no drive is
specified, then drive #1 is assumed. For each file, its
symbolic name, starting disk address, length, data density
(single or double), and type will be printed. For type 1
files, the go-address will also be printed. To prematurely
terminate a listing, a control-C may be typed. If output to a
device other than the console terminal is desired, then the
desired output device number may be specified by typing a #
character followed by the device number. The device number
must correspond to a device that has been interfaced to the
system in both hardware and by adding the appropriate
personalized input/output routine.

CR <file name> <length> <optional start address> <optional density>

This command will create a new file on the drive indicated by
the file name. The length argument specifies the number of
256-byte blocks. If no starting address is given, then the
file will start after the "last" (innermost) file currently
allocated on the diskette. Otherwise, the supplied starting
address will be used. The optional density specification is a
single letter, "5" or "D", signifying that the file should be
created in single or double density, respectively. If no
density choice is specified, double-density is assumed. No
density specification may be made with the single-density
version of the DOS. The CR command will only create a file

·•
!

- NORTH STAR DOS - B-1



COMMANDS (Continued)

directory entry - no accessing of the file itself will be
done.

DE <file name>

This command will delete an existing file directory entry on
the indicated drive. No actual accessing of the file blocks
will be done. The DE command, in conjunction with the CR
command, may be used to change the length of a file on the
disk. If this is done, note that the type and type-dependent
information will have to be re-entered.

TY <file name> <file type> <optional go-address>

This command is used to change the type of the specified file
on the indicated drive. If type 1 is specified, then the
third argument must be supplied to specify the "go-address".

GO <file name>

This command is used to load the specified file into RAM from
the indicated drive and begin execution. The GO command may
be used only with type 1 files. The GO command will read the
entire file into RAM beginning at the go-address, and then
jump to the go-address. Therefore, the first byte of the file
must be the entry point of the program. The GO command sets
the HL register pair to a value which points to the remainder
of the command line (any characters typed after the file name)
as stored in the DOS command buffer in memory. In this way,
it is possible to send arguments to a program through the
command string. The maximum length of a DOS command line is
2" characters.

The library routines of DOS are all included in the region of
DOS preceding address 2A""(hex). For Release 5 dual-density
DOS, command and I/O processing are handled by code from
2A""(hex)-2CFF(hex). It is possible to GO to a file with a
GO-address in the range 2A00(hex)-2CFF(hex). However, upon
return or re-entry to the DOS, the DOS routines in that region
will have been overwritten, and no command processing will be
possible. Instead, the Release 5 dual-density DOS will print
the message:

RE-BOOT

and await an input character from the console terminal. After
a system softwae diskette is loaded and a character is typed,
the DOS will be re-booted from the disk.

JP <hex RAM address>

This command will cauSe the computer to jump to the specified

- NORTH STAR DOS - B-2



,,

,···>
••

:
·•:
,

COMMANDS (Continued)

RAM address. It provides a way of executing programs which
exist in the address space of the computer. Do not confuse
this command with the GO command. However, like the GO
command, JP sets the HL register pair to point to the
remainder of the command string.

LF <file name> (hex RAM address>
SF <file name> <hex RAM address>

These commands may be used to load or save a disk file to or
from RAM. The entire contents of the file will be read to or
written from the area starting with the specified RAM address.

RD <disk address> <hex RAM address> <4 of blocks> <optional density>
WR <disk address) <hex RAM address> <# of blocks> <optional density>

These commands may be used to read or write a specified drive
directly to or from RAM. The WR and RD commands should be
used with great care, as typing errors can have catastrophic
effects. The disk address may optionally be followed by ",1",
",2", ",3" or ",4" to indicate a particular drive. Otherwise,
drive #1 is assumed. Drive.4 may not be specified in single
density systems. The amount of data to transfer is specified
as 256-byte file blocks. The optional density specification
is a single letter, either "S" for single-density or "0" for
double-density. If the density specification is omitted,
dOUble-density is assumed. (The single-density DOS, however,
will ignore this argument.) Note that a method of copying one
diskette to another in a single drive system would involve
repeated use of the RO and WR commands.

IN <optional drive number> <optional density>

This command is used to initialize each new diskette to be
used in the system. The IN command writes each block on the
specified drive with ASCII blank characters (29 hex). The
optional density argument, "s" or "0", may be used to specify
whether the diskette should be initialized in single or double
density format. If this argument is omitted, the diskette
will be initialized to dOUble-density. (The single-density
version of the DOS will ignore the density specification.)
This procedure initializes the directory and also guarantees
that no "hard disk error" can result from access to an
uninitialized file block. The IN command takes about 15
seconds. Needless to say, one should make sure that the
proper diskette is loaded before issuing the IN command. Note
that an initialized diskette does not contain a copy of the
DOS. The IN command does not require any buffer area outside
of the DOS memory area.

- NORTH STAR DOS - B-3



DISK SYSTEM START-UP

After power-on, or when it is desired to re-start the disk
system, the Se80 or Z80 computer must be forced to begin
execution at the PROM bootstrap program starting address (E800
hex in the standard version). The PROM bootstrap program will
read a sector from drive #1, disk address 4 into RAM at the DOS
starting address (2000 hex in the standard version). After
reading in the sector, the bootstrap will branch to the DOS
starting address. The program in the first block of the DOS will
proceed to read in the remaining sectors of the DOS from disk
starting at address 5. Then the DOS will print the prompt
character (* or +) and await a command from the terminal.

Once the DOS has been started, it is no longer necessary to leave
the diskette in drive *1. The DOS is fully resident in RAM, and
makes no disk accesses unless asked to do so. Furthermore, the
DOS does not maintain any copies of the diskette file directory
in RAM between commands. Thus it is possible, for example, to
obtain listings of the file directories of several diskettes by
inserting them one at a time and then issuing the LI command.
Also, it is possible to copy one diSkette to another in a single
drive system by repeatedly exchanging diskettes and doing the
appropriate sequence of RD and WR commands or LF and SF commands.

- NORTH STAR DOS - C-1



,
;

DISK ERRORS

Most disk operations are tried 10 times by the DOS before
~' reporting failure. Upon failure, an error message of the

following form is printed on the console terminal:

DISK ERROR TYPE: x DRIVE: y SECTOR: zzz

where x=the error type,
y=the drive number on which the error occurred, and

zzz=the disk address at which the error occurred.

The error types have the following meanings:

1 SYNC BYTE NOT FOUND: Indicates badly written data on the
diskette, or a diskette not properly loaded into the drive, or
an attempt to read an uninitialized diskette.

2 eRe COMPARE ERROR: Indicates badly written data.

3 VERIFY COMPARE ERROR: Indicates data on disk does not compare
with RAM in a verify operation.

4 NO INDEX PULSE: Indicates wrong type of diskette or badly
loaded diskette.

5 DENSITY MISMATCH: Indicates single-density data found where
double-density data was expected or visa vera.

6 WRITE PROTECT: Indicates a write operation was attempted to a
write protected diskette.

If the DOS prints a guestion-mark(?) in response to a command,
this indicates illegal form for the command or an illegal
argument value.

.. - NORTH STAR DOS - D-1



r

DOS LIBRARY ROUTINES

This section describes how user machine language software may
interface to the DOS for the accessing of disk files.

The DOS ENTRY POINTS AND FLAGS section shows the entry points for
each of the routines to be described here. The exact interfacing
requirements are described in that section. The DOS uses the
stack pointer existent at call time, and some of the DOS library
routines may require as much as 30 bytes of stack storage. Note
that the DOS may be re-entered without using the bootstrap PROM.
Now follows a discussion of each library routine.

DLOOK
This routine searches for a specified file name in the
directory of the indicated disk drive. If the specified
name begins with a blank, then an "empty" file directory
entry is looked up. On failure to find the requested entry,
HL is set to the value of the first free disk address on the
indicated drive following the last file on the diskette.
The file name must be in the correct syntax.

On success, HL contains a pointer into a buffer in DOS RAM
that has a copy of the sought entry. The pointer addresses
the first byte following the symbolic name (i.e., byte 8).
Also, on return, the ACC specifies the disk drive which was
determined from the name passed as argument.

DWRIT
This routine is used to write back to diskette an updated
file directory entry which was previously found using DLOOK.
No disk activity may occur between the DLOOR and the DWRIT
call.

DeOM
This routine may be used to issue an arbitrary disk read or
write command. On a read request, DCOM will try 10 times
for a successful read before giving up and branching to
HOERR. DeOM will fail return if the supplied arguments are
out of bounds. However, great care should be used to avoid
calling DeOM with incorrect arguments.

DOS
This is an entry point to the DOS command processor. It can
be used to return control to a loaded DOS without requiring
a PROM bootstrap load.

DOSERR
When a control-C is typed at the console terminal during a
diskette directory listing, or when DOS is passed a file
name which is syntactically incorrect, DOS branches to the
JMP instruction stored at this location. If left
unmodified, the DOSERR JMP transfers control back to a DOS
error-handling routine. Modifying the address contained in

- NORTH STAR DOS - E-l



-,

,,

DOS LIBRARY ROUTINES (Continued)

this JMP instruction will allow a user's application program
to retain control under the above-named error conditions.

HDERR
HOERR branches to DOS code that prints an error message and
then enters the DOS command processor. DOS branches to
HDERR whenever a read attempt fails despite 10 retries. For
your software to retain control in the event of a hard disk
error, it must modify the address of the HOERR JMP
instruction (e.g., LXI H,ADDR; SHLD HDERR+l). The stack is
set to the stack pointer value before the Call to "DCOM. HL
is set to the disk address at which the error was
discovered. [Note: Software for dealing with hard disk
errors is notoriously difficult. It is suggested that due
to the expected low frequency of hard disk errors, for most
applications the existing HOERR action will be sUfficient.
Hard disk errors will result primarily from careless use
(e.g. forgetting to initialize a diskette, or from removing
a diskette while writing is in progress). Hard disk errors
can also result from power failure during writing, or from a
hardware system failure.]

LIST
This routine will list the file directory of the specified'-'~'

drive. The listing format will be exactly the same as the
listing format obtained with the DOS LI command.

OFTEN
This routine is called at least once every 40 milliseconds
when DCOM has been called to perform disk operations. In
the delivered copy of DOS, this routine simply does a RET.
However, OFTEN may be personalized to a routine to poll for
input/output requests or to enable and disable interrupts.
The OFTEN routine may execute as long as is needed, and disk
activity will continue when the OFTEN routine returns.
OFTEN must preserve all registers except the accumulator and
may only use two bytes of stack space. Note that OFTEN will
be called at bootstrap load time, even before the 2900
personalization block is loaded.

Note: Here is a procedure for creating a new file using the above
routines: First use DLOOK to search for the desired new name
- if DLOOK succeeds then a file of that name aready exists and
should not be created. On failure, HL will have the disk address
which should be used as the starting address of the new file.
Next, use DLOOK to find an empty directory entry by looking up a
blank name. If this call to DLOOK fails, then the directory
fails. On success, use the pointer in HL to copy the new file
name into the directory entry, and copy in the disk address and
length and type information. Finally, call DWRIT to copy the new
directory entry back to the disk •

.., - NORTH STAR DOS - E-2



ADDITIONAL DOS PERSONALIZATION

The primary type of personalization that can be done to the DOS
is the insertion of input/output routines that allow
communication of the DOS and other system software with a
particular hardware configuration. Input/output routine
personalization is described in detail in the GETTING STARTED
section of this manual. There are a number of other types of
personalization that can be done to the DOS that are described in
this section.

READ AFTER WRITE CHECK

If the read after write check option is turned on, then a read
and verify operation is performed after every disk write
operation which checks that the data written on the disk by the
write operation matches what is in RAM. With this option turned
on, write operations will be slower, but read operations will be
the same speed. It is strongly recommended that the read after
write option be turned on unless the application requires great
speed of disk access. The read after write option is turned on
if the byte value at address 2e2B(hex) of the standard version of
DOS is non-zero and turned off if zero.

PAGE SIZE

The output of some devices, such as CRT'S and video displays, can
only display a fixed size page of information at one time. If
the page size option is enabled, then the file directory listing
which is output by the LI command or the LIST library routine
will stop after a page of information has been output and will
not display the next page until the USer indicates he wishes to
proceed by typing the return key. The page size option only
affects the operation of the console terminal (device #0). -lL
the byte value at address 2033(hex) of the standard version of

AUTOMATIC START

If the automatic start option is turned on, then a single command
which is stored in the DOS input buffer is automatically executed
immediately after a DOS bootstrap operation. This feature, for
example, allows for the automatic loading and running of a
program such as BASIC up'on system start-up. Initially, the
automatic start option is turned off. To turn on the option, the
byte value at address 2030(hex) of the standard version of DOS
should be set to zero. Ini tl.ally--;tlie-value "iSOiie:-----
Additionally, the input buffer must be setup to contain the

- NORTH STAR DOS - F-l



ADDITIONAL DOS PERSONALIZATION (Continued)

command which should be automatically executed. The two
~ addresses 2e31 and 2032(hex) contain the low order and high order

byte, respectively, of the address of the input buffer within the
DOS. The input buffer should be loaded with the ASCII values of
the successive characters of the desired command. The last
character of the loaded command must be a return (00 hex).

EXAMPLE PERSONALIZATION

The following listing shows an example procedure which will
modify the version of DOS on a diskette so that the read after
write option is turned on, the page size option is turned on and
the page size is set to 24 lines, and the automatic start option
is turned on and the automatic start command is set to be "GO
BASIC" •

Load the diskette to be modified in drive #1

+LF DOS 4000
+GO M2D00
>FM 402B 1
>FM 4033 24T
>FM 4030 0
>DH 4031,2
402D: 31 27
>FM 4731 "GO> "'1
>FM 4732 "0" 41'

>FM 4733 " " ;;;
>FM 4734 "B" ,0:.,

>FM 4735 "AU Ii

>FM 4736 "5" ('"
>FM 4737 "I" -r1

>FM 4738 "C" H'
>FM 4739 D
>OS
+SF DOS 4000

Load DOS into RAM
Load and run the Monitor
Turn on read after write option
Set page size to 24 lines
Turn on automatic start option
Determine input buffer address
Address is 2731, for example
Load input buffer with "GO BASIC"

Put return code at end of command
Return to DOS
Save modified DOS back on the diskette

- NORTH STAR DOS - F-2



DOS ENTRY POINTS AND FLAGS

*

**NORTH STAR DISK OPERATING SYSTEM

*

*THIS NEXT ENTRY IS USED BY THE BOOT PROM TO ENTER THE DOS
START JMP 0 0 IS NOT THE REAL ADDRESS

*

*THE OFTEN ROUTINE IS CALLED FREQUENTLY DURING USE OF DCOM
*BC, DE, AND HL MUST BE PRESERVED BY OFTEN.
*ONLY TWO STACK BYTES ARE AVAILABLE.
OFTEN RET CHANGE TO JMP INSTRUCTION

DS 2 IF ADDING YOUR OWN OFTEN ROUTINE

STANDARD VERSION ORIGIN VALUE
THESE CELLS ARE RESERVED

ORG 2000H
DS 7

*THIS ROUTINE DETECTS A CONTROL-C
*IF Z IS SET ON RETURN, THAT MEANS A CONTROL-C WAS TYPED.
*OTHERWISE, IF NO CHARACTER WAS TYPED OR A CHARACTER OTHER
* THAN CONTROL-C WAS TYPED, Z MUST NOT BE SET.
*CONTC SHOULD RETURN IMMEDIATELY IF NO CHAR WAS TYPED,
* NOT WAIT FOR A CHARACTER AND THEN RETURN.
*ALL REGISTERS MAY BE USED.
CONTC JMP CONTC
*

*THIS IS THE CHARACTER INPUT ROUTINE.
*OEVICE NUMBER MAY BE SUPPLIED IN Ace, IF DESIRED.
*THE 7-BIT ASCII CODE MUST BE RETURNED IN THE ACC.
*ONLY THE ACC AND FLAGS MAY BE MODIFIED.
CIN JMP CIN YOUR ROUTINE MUST DO A RET

**THIS IS THE TERMINAL INITIALIZATION ROUTINE
*ALL REGISTERS MAY BE USED.
*IF NOT NEEDED, MERELY PATCH IN A RET.
TINIT JMP TINIT
*

*THIS IS THE CHARACTER OUTPUT ROUTINE
*THE CHARACTER TO BE OUTPUT MUST BE IN THE B REGISTER.
*OEVICE NUMBER MAY BE SUPPLIED IN Ace, IF DESIRED.
*ON RETURN THE CHARACTER MUST ALSO BE IN THE ACC.
*ONLY THE ACC AND FLAGS MAY B MODIFIED
COUT JMP COUT YOUR ROUTINE MUST DO A RET

*

*

~~~~

0000
0000
0000
2000
2007
2007
2007
2007
2007 C9
2008
200A
20M
200A C30000
200D
200D
200D
200D
200D
200D
200D C30D20
2010
2010
2010
2010
2010
2010 C31020
2013
2013
2013
2013
2013 C31320
2016
2016
2016
2016
2016
2016
2016
2016
2016 C31620
2019

- NORTH STAR DOS - G-1



DOS ENTRY POINTS AND FLAGS (Continued)

,

DOS
CALL TINIT

AN ENTRY POINT TO THE LOADED
RESET THE STACK PTR, AND NOT

e IS NOT THE REAL ADDRESS

*005 LIBRARY ROUTINE ENTRY POINTS, ETC.,
'THIS ADDRESS IS BRANCHED TO ON HARD DISK ERRORS
HDERR JMP 0 e IS NOT THE REAL ADDRESS,
'THIS IS THE FILE DIRECTORY LOOKUP ROUTINE
'ACC MUST CONTAIN THE DEFAULT UNIT NUMBER (NORMALLY 1)
*HL=POINTER TO LEGAL FILE NAME IN RAM, WITH OPTIONAL DRIVE
, SPECIFICATION FOLLOWED BY EITHER A BLANK OR CARRIAGE RETURN.
'UNIT NUMBER DETERMINED FROM NAME IS ALWAYS RETURNED IN ACC.
'FAILURE IF CARRY SET. ON FAILURE, HL=FIRST FREE DISK ADDRESS
'ON SUCCESS, HL HAS A POINTER TO THE EIGHT BYTE OF A COPY
*OF THE DOS ENTRY IN RAM
DLOOK JMP e e IS NOT THE REAL ADDRESS,
'THIS ROUTINE WILL WRITE A DIRECTORY ENTRY BACK TO DISK
'NO ARGS ARE NEEDED. MUST FOLLOW DLOOK.
DWRIT JMP 0 e IS NOT THE REAL ADDRESS,

'THIS ADDRESS IS
*ENTRY HERE WILL
DOS JMP e,
'THIS NEXT BYTE IS A FLAG USED BY DOS.
*IF 0, THEN READ-AFTER-WRITE CHECK IS NOT DONE,
'IF 1, THEN READ-AFTER-WRITE CHECK IS DONE.
RWCHK DB e,

'NEXT BYTE SPECIFIES VIDEO TERMINAL LINE COUNT. IF 0, THEN
'NO PAGING OF THE LIST COMMAND WILL BE DONE
PAGES DB 24 INITIALIZED FOR 24 LINE TERMINAL,

*THIS ROUTINE MAY BE USED TO ISSUE A DISK COMMAND
'ACC=NUMBER OF BLOCKS
*B=COMMAND (0=WRITE, l=REAO, 2=VERIFY, -l=SING INIT, -2=DBL INIT)
*C=UNIT NUMBER, BIT 7=DOUBLE DENSITY BIT
'DE=STARTING RAM ADDRESS, HL=STARTING DISK ADDRESS
'RETURN WITH CARRY SET MEANS ARGUMENTS WERE ILLEGAL
DCOM JMP e e IS NOT THE REAL ADDRESS,
'THIS ROUTINE MAY BE USED TO LIST A FILE DIRECTORY
'ACC=DISK UNIT, L=OUTPUT DEVICE NUMBER FOR LISTING
LIST JMP 0 e IS NOT THE REAL ADDRESS,

'THIS ADDRESS BRANCHED TO ON CONTROL-C DURING LIST OR
'FILE NAME ERROR DURING DLOOK
DOSERR JMP e NOT REALLY e,
'THIS BYTE IS SET TO DENSITY AFTER DLOOK CALLS
'eeH IF SINGLE DENSITY, 80H IF DOUBLE DENSITY
DEN DS 1,
'AUTO START FLAG. NORMALLY 1 - SET TO e FOR TURNKEY STARTUP
AUTOS DB 1,
'NEXT TWO BYTES IDENTIFY THE LOCATION OF THE DOS INPUT BUFFER

DW 0 NOT REALLY e

2el9
2e19
2e19
2e19 C3eeee
ZelC
2elC
zelC
2elC
2elC
ZelC
2elC
ZelC
ZelC
ZelC C3eeee
ZelF
ZelF
ZelF
ZelF C3eeee
2e22
Ze22
2eZZ
2e22
2e22
2e22
2e22
2e22 C3eeee
2e25
2e25
2e25
2e25 C3eeee
2e28
2e28
2e28
2e28 C3eeee
2e2B
2e2B
2e2B
2e2B
2e2B ee
2e2C
2e2C
2e2C
2e2C C3eeee
2e2F
2e2F
2e2F
2e2F
2e3e
2e3e
2e3e el
2e3l
2e31
2031 e000
2033
2e33
2033
2e33 18
2034



UTILITIES

There are four operations which may be considered as part of the
DOS but are actually implemented as GO files. The operations,
and their corresponding GO file names are:

DT - Disk Test.
CF - Copy File.
CD - Copy Disk.
CO - Compact disk and convert to double-density.

Complete descriptions of the utilities follow.
arguments to the utilities can be listed on the
where "GO" is typed. For example

+GO DT 1

Some of
command

the
line

, -~.

may be typed to the DOS. This tells the DT utility which drive
is to be tested. Any arguments which you do not supply to the
utility on the GO command line are explicitly requested by the
utility.

The origin in memory of each of the utilities lies just after the
end of DOS (2A00H in single-density systems and 2D00H in double
density systems). Each of the utilities reauires a 5K buffer
area (2.5K in single-density systems). The amount of RAM
required by a utility may be computed by adding the buffer size
to·the size of the utility on diskette. Because the utilities
load at the same address as the standard version of BASIC and
many other applications programs, you should be careful that no
programs or data be overwritten and therefore lost as a result of
using a utility.

You may wish to use a utility to operate on a diskette different
than the diskette that holds the utility program. In this case,
you must change diskettes after the utility has been loaded into
RAM. Each of the utilities allows a different diskette to be
loaded before actually beginning its operation. Diskettes can be
switched any time after the utility makes its first request for
input. Do not answer that request until the switch, if any, has
been made!

In the following expanded descriptions of the utilities, any
references to double-density capability refer only to versions of
the utilities for use on double-density systems.

Typical user-computer interaction at the terminal is given as
EXAMPLES for each of the utilities. In these examples, note that
the DOS prompt given is a plus-sign (+). However, single-density
versions of the DOS generate an asterisk (*) as prompt. In
examples, the symbol <CR> comes immediately after the user's
responses to indicate that a line of user input must always be
terminated by striking the RETURN key.

- NORTH STAR DOS - H-1



r

UTILITIES (Continued)

DT - Disk Test.

,
,

The Disk Test utility
loaded in that drive.
repeated:

tests the specified drive and the diskette
The following cycle is continuously

r

,,

,,,

,,

-,

a) The entire diskette is written with data, starting at sector
0. An incrementing pattern is used. If the read after write
check is enabled (see DOS section ADDITIONAL DOS
PERSONALIZATION), then each track is verified immediately
after it is written.

b) The data on the entire diskette is verified, starting at
sector 0. If any sector cannot be read or contains data
different than what was written, an error messgae is printed
on the console terminal and the test stops.

c) If no errors have been detected by this point, the message

PASS COMPLETED.

is printed on the console terminal.

To terminate a disk test, type control-C. A diskette used for a
disk test does not emerge from the test containing the
information which was previously on it. Also, a diskette which
was used for a disk test must be initialized before it is
SUbsequently used for data storage.

EXAMPLES

+GO DT<CR>
DRIVE NUMBER: 2<CR>
SINGLE(S) OR DOUBLE(D) DENSITY TEST? D<CR>
LOAD DISKETTE AND PRESS RETURN TO BEGIN TEST.<CR>
PASS COMPLETE.
PASS COMPLETE.
PASS COMPLETE.
CONTROL-C STOP User types control-C here.
+

+GO DT 2 D<CR>
LOAD DISKETTE AND PRESS RETURN TO BEGIN TEST.<CR>
DISK ERROR TYPE 3 DRIVE 2 SECTOR 352
+

•,, - NORTH STAR DOS - H-2



UTILITIES (Continued)

CF - Copy File.

The Copy File utility copies the contents and type information
from a source file to a destination file. The destination file
may be a file which already exists, but if it does not, it is
created automatically. If the destination file already exists it
must be at least as large as the source file (in 256-byte file
blocks). whether the destination file exists or not, CF asks if
the destination file should be written in double or single
density. The source and destination files may be on different
diskettes loaded on different drives, or they may be on the same
diskette.

If any sectors in a source file are recorded in a density
different than the density specified in the directory entry, the
CF utility treats those sectors as sectors full of blanks at the
specified density. No change is made to the source file,
however.

Note that versions of the CF utility delivered for single-density
systems only provide single-density operation.

EXAMPLES

+GO CF<CR>
FROM FILE: TEST<CR>
TO FILE: PROGRAM,2<CR>
EXISTING FILE. SINGLE(S) OR DOUBLE(D) DENSITY? D<CR>
COpy COMPLETED.
+

+GO CF ABC ABCl<CR>
NEW FILE. SINGLE(S) OR DOUBLE(D) DENSITY? S<CR>
COPY COMPLETED.
+

- NORTH STAR DOS - H-3



,,,,
•
•• UTILITIES (Continued)

CD - Copy Disk.

The Copy Disk utility copies the entire contents of a diskette
loaded on one specified drive to a diskette loaded in another
specified drive. The source diskette may contain single-density
information, double-density information, or a combination of the
two. After the copy is completed, the destination diskette will
contain all the same information as the source diskette, and each
sector will be recorded in the same density as the source. If
any information on the source diskette is impossible to read, the
copy terminates. The copy operation can be retried after the bad
sector has been rewritten.

EXAMPLES

+GO CO<CR>
COpy FROM DRIVE: l<CR>
TO DRIVE: 2<CR>
LOAD DISKETTES AND PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED.
+

+GO CD 2 3<CR>
LOAD DISKETTES AND PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED.
+

- NORTH STAR DOS - H-4



UTILITIES (Continued)

co - Compac t.

The Compact utility is used to "compact" the file space on a
diskette. Any unused disk space between existing files is
eliminated by moving the files toward track e. Thus, the CO
utility can be used to reclaim disk space after files have been
deleted or shortened, or in case files were created in such a way
as to leave gaps of disk space between them.

The CO utility also provides a second, optional function which
converts a diskette to double-density format. That is, as a
result of running CO, the diskette file directory will be
recorded in double-density, and all files that were previously
single-density files will become double-density files. Each pair
of single-density file blocks (256-bytes per block) is stored in
one double-density sector (512 bytes).

Before actually beginning to move files on the diskette, CO
checks the file directory for any "overlapping" files.
Overlapping files are any files which include at least one sector
in common. Overlapping files can only be created when the
optional <disk address> argument is used with the DOS CR command,
or by applications programs which create such files. If any
overlapping files are discovered by the CO check, the file names
are printed on the console terminal and the user is given the
opportunity to abort the compaction. If overlapping files exist,
the compaction may yield unpredictable results. (NOTE: The
special case of a file with disk address beginning at 0 is
ignored by this check, and by the compaction process.)

A compaction can take from I to 30 seconds.

EXAMPLES

+GO CO<CR>
LOAD DISKETTE AND SPECIFY DRIVE #: l<CR>
CONVERT TO DOUBLE DENSITY? Y<CR>
COMPACTION COMPLETED.
+

+GO CO 3<CR>
CONVERT TO DOUBLE DENSITY? Y<CR>
THE FOLLOWING FILES HAVE CONFLICTS
DATAl
TESTl23
PROCEED WITH COMPACT IN PRESENCE OF CONFLICTS? N<CR>
+

•

- NORTH STAR DOS - H-5



·:

··•

;

i

;
•,

•

••
'-'

•·

·•
·•

•

,

North Star Monitor

Version 2

by Thos Sumner

INTRODUCTION

The North Star Monitor is a program which provides the user with
certain maintenance and debugging functions which would normally
be provided in a limited wayan systems which include a control
panel. The Monitor is intended to be used in conjunction with
the North Star Disk Operating System (DOS). No license is
extended for use of the Monitor in systems without a North Star
disk controller board.

Commands to the Monitor are entered via the console using a
format consistent with the DOS commands. The console is defined
to be the terminal with which the DOS normally communicates
- communication is done using the DOS I/O routines. When the
Monitor is in COMMAND MODE, i.e .• is ready to accept a command,
it will print a > at the beginning of a line on the console.
Command editing facilities compatible with the North Star BASIC
editing features are included in the Monitor.

The following list summarizes the commands available:

CM Compare memory block contents
FM - Fill memory block
MM - Move memory block contents
SM - Search memory block
TM - Test memory block
DH - Display memory hexadecimal
DA - Display memory with ASCII interpretation
DS - Display memory and substitute values
JP - Jump to program
as Return control to the DOS
IL - Perform initial load from bootstrap PROM
00 Assign output device number for the Monitor
ID - Assign input device number for the Monitor

A detailed description of each command appears in a later section
below. All printed output from the Monitor is formatted to fit
into sixty-four character lines.



r
COMMAND FORMAT

No action is taken on any command until the command is fully
entered and all editing functions are complete (i.e. when a
carriage return is typed). Each command is fully checked for
syntax errors before any part of the command is performed. Thus.
a command aborted because of illegal s~tax will have no effect.

The command syntax is quite simple. Each command appears on a
single line and begins with a two letter mnemonic name which
identifies the command. Upper case (capital) letters must be
used for commands. The command name is followed by any required
parameters which are separated from the command name and each
other by spaces (blanks). spaces may not appear within a
parameter (except within quotation marks as described later).
The command is terminated by a carriage return.

Commands may take no ~arameters or may take one or more of
several types of parameters. The parameters required for Monitor
commands have the following forms:

NUMBER

ADDRESS

BLOCK

A NUMBER may be any of the following:

1. A hexadecimal number specified by a sequence of
one or more hexadecimal digits.

2. A hexadecimal number specified by a sequence of
one or more hexadecimal digits followed by the
letter H.

3. A decimal number specified by a sequence of one
or more decimal digits followed by the letter
T.

An ADDRESS is a NUMBER in the range from 0 though
65535T (0 through FFFFH).

A BLOCK is a contiguous region of memory specified
by one of the following:

1. An ADDRESS alone specifies a one byte block at
the given memory address.

2. Two ADDRESSES separated by a hyphen (-) specify
a block whose first byte is at the first
address given and whose last byte is at the
second address given (e.g. ~ 2000-3FFF). The
second address may not be less than the first.

3. An ADDRESS followed by a NUMBER separated by a
comma specifies a block whose first byte is at
the ADDRESS given and whose length is given by
the NUMBER (e.g •• 2000.1000). The address of

- NORTH STAR MONITOR - A-l



COMMAND FORMAT (Continued)

1. A NUMBER in the range 0 though 255T (0 though
FFH). or

the last byte (ADDRESS + NUMBER - 1) may not
exceed 65535T (FFFFH).

I
i,
I,
t,
f
I,

!
f

BYTE VALUE A BYTE VALUE
single byte.
forms:

is a parameter whose value fills a
It may be specified by either of two

2. A non-control character in quotation marks
(e.g •• "A"). A non-control character is any
character entered without using the control key
or other function keys such as carriage return,
line feed, tab, etc.

DEVICE NUMBER A DEVICE NUMBER is a cross-hatch (it). followed by
a digit from 0 to 7, corresponding to one of the 8
possible I/O devices which have been interfaced to
your DOS through the DOS I/O routines. Note that
a DEVICE NUMBER may be given immediately after the
code for any Monitor command which produces
output. As a result. the output produced by the
execution of that command will be printed on the
specified device. For example, to send a
hexadecimal dump of memory from 2000H-29FFH to
system output device 4:
>DH #4 2000-29FF

Also note that only the output for the given
command will be re-directed. After the command
has been executed. output resumes on the regular
Monitor output device (as set by the OD command).

- NORTH STAR MONITOR - A-2



CONMANDS

This section gives a description and example for each Monitor
command. An expanded example of the use of the Monitor follows
in a later section. Note that the typing of commands can be
corrected using all the line editor features described in the
LINE EDITOR chapter of the BASIC section of this manual.

CM <block> <address>

Compare the memory area defined by BLOCK with the area of the
same length starting at ADDRESS and print the address and
contents of all corresponding bytes which are not identical.
For example, to compare the contents of the seven bytes
starting at 3400H with the seven bytes starting at E385H:
>CM 3400,7 E385

FM <block> <byte value>

Fill each byte of the memory area defined by "BLOCK with the
value specified by the BYTE VALUE. For example, to fill the
block of memory from 4000H to 5000H with the ASCII blank
character:
>FM 4000-5000 " "

MM <block> <address>

Move the contents of the memory area defined by BLOCK to the
corresponding positions in the area of the same size beginning
at ADDRESS. Overlapping areas of memory are allowed and the
moves are per formed correctly. For example. to move the
contents of the one hundred (decimal) byte block starting at
address 9000 (decimal) into the area starting at F000H:
>MM 9000T.100T F000

SM <block> <list of byte values>

Search the area of memory defined by BLOCK and print the
addresses of all occurrences of the sequence of bytes
specified in the LIST OF BYTE VALUES. The list must contain
at least one byte value. If it contains more than one. commas
must separate the various byte values from one another. For
example. to find all bytes in the standard DOS area whose
value is one:
>SM 2000-29FF 1

To find all occurrences of the sequence "MINE" in the block
4000H-5000H:
>SM 4000-5000 "M","I","N","E"

It is not necessary for the sequence of bytes defined in a
LIST to be wholly contained within the specified BLOCK. SM
will report the locations of all occurrences of the sequence
as long as the first character in each occurrence lies within

- NORTH STAR MONITOR - B-1



,·,

··c,,

,
,,

"

CO~lANDS (Continued)

the BLOCK.

TM <block> <number>

Test the memory area defined by BLOCK. The NUMBER parameter
specifies the delay (in seconds) between a write phase of the
test and the subsequent verify phase. The delay allows
testing memory for failures resulting from gradual decay of
data. The number may have a value from 0 to 255T (0 to FF'H)
~or example, to test the 8K memory located at 6000H without
delay between the write phase and the verify phase:
>T~l 6000H,2000 0

The test operates as follows: Values are written into every
byte in the block (write phase) and then the values are
checked (verify phase). In a complete pass. 256 write and
verify phases occur, so that every possible value is tested in
every byte. The test is designed to catch addressing errors
as well as data bit errors. The test requires about 15
seconds r thousand b tes of memor tor a com fete ass (plus

times tee ay va ue). T e test Wi run continuously
and can only be halted by typing a control-C. Note that even
running the test for a few seconds will perform a quick check
on the entire block. After each complete pass, the TM command
will print PASS COMPLETE on the terminal. For every memory
error detected, the address of the problem is printed in
hexadecimal followed by the value stored at that address and
the value found at that address.

DH <block>

Display the contents of the memory area defined by BLOCK on
the console in a format of two hexadecimal digits per byte
with sixteen bytes on each line. For example, to print the
contents of memory from 12000 (decimal) to 12099 (decimal) in
hexadecimal:
>DH l2000'T ,100'T

DA <block>

Display the contents of the memory area defined by BLOCK in
the format of the DR command but with additional lines showing
the ASCII character represented by the low order seven bits of
each byte positioned i~~ediately under the corresponding
hexadecimal digits. A control code is printed as a blank and
each character is preceded by a minus-sign if the high order
bit of the byte is a one. For example, to print the contents
of memory from 12000 (decimal) to 12099 (decimal) in both
hexadecimal and as ASCII characters:
>DA l2000T-12099T

"

,
,,
;
•
",,

,,,
~,

- NORTH STAR MONITOR - B-2



COMMANDS (Continued)

DS <address>

Display the current contents of the memory area starting at
ADDRESS in hexadecimal. one byte at a time. and allow the
option of substituting a new value for each byte. After each
byte is displayed, if it is desired to modify the contents of
the displayed cell. then a new hexadecimal value in the range
o to FF may be entered. If it is desired to leave the byte
unchanged, then type one of the following terminators
immediately. Whether or not a new value is entered. the
terminator character typed determines the sUbsequent action:

1) Blank. If a blank is typed then the next byte will be
displayed for possible replacement.

2) Comma. If a comma is typed, then the printing of the
next byte is suppressed. and subsequent typing will
either replace or leave unmodified that next cell.

3) Carriage return. Typing a carriage return finishes the
command and returns to command mode.

Note that the replacement occurs as soon as one of the
terminators is typed, so that the line editor may not be used
as in other commands. However. a typing error in specifying a
new value may be corrected with any of the backspace commands
before the terminator is typed. For example, to replace the
contents (currently 64H) of the byte at 3233H with a zero:
>OS 3233
3233 64=e

JP <address>

Cause the computer control to jump to the specified ADDRESS.
The Monitor performs a CALL instruction to that address, so
that if the program executed at that address later performs a
RET and has preserved the stack pointer and not destroyed any
of the memory of the Monitor. then control will return to the
Monitor for another command. For example, to execute the
normal continue location for BASIC:
>JP 2M4

Note that when the JP command is executed. the HL register
pair is set to point to the remainder of the command which was
typed in (any characters typed after the ADDRESS). This makes
it possible to send parameters through the JP command to the
program being executed.

os

Jump to the standard re-entry address of the DOS. This
command requires no parameters.

- NORTH STAR MONITOR - B-3



COMMANDS (Continued)

IL

Jump to the bootstrap startup PROM to perform an initial load
of the DOS from diskette. This command requires no
parameters.

00 <device number>
10 <device number>

Sets the Monitor's output or input device number.
respectively, to the specified DEVICE NUMBER. During Monitor
output and input. these numbers are sent to the DOS I/O
routines, and may be used by them to determine routing of
output and input to and from the appropriate system I/O
devices. The value supplied to 00 or 10 must be in the range
of ~ to 7. Both the input and output device numbers are set
to zero when the Monitor is entered. corresponding to I/O from
the console terminal. When an 00 or 10 command is executed.
the new device number remains in effect for all output or
input, respectively, produced by the Monitor until another 00
or 10 command is typed. (Note that these device numbers will
also remain in effect upon re-entry to the Monitor at its
initial entry point.) For example. to cause output to appear
at output device 1:
>OD #1

To cause input to be accepted from device 6:
>ID #6

INTERRUPTING THE MONITOR

Some commands may compute for long periods of time and/or produce
substantial amounts of output. The CM (compare memory), 8M
(search memory), DH (display hexadecimal), DA (display ASCII) and

TM (test memory) commands may be interrupted by typing a control
C on the console. This will interrupt the Monitor to allow a new
command to be entered.

- NORTH STAR MONITOR - B-4



HARDWARE REQUIREMENTS

Any system operating the North Star DOS and BASIC will execute
the Monitor. However, because of its applications, the Monitor
is supplied in versions assembled at four different locations.
Each version of the Monitor requires 2~48 (8~0H) bytes and has
its primary entry point at its origin. The standard versions
are:

•

File name

M2A00
M2D00

M6700

MF400

Origin

0000H

2A00H
2D00H

6700H

F400H

Oeser iption

For systems with memory at origin zero, this
version may be in memory along with both DOS
and BASIC. It may be re-entered by a simple
processor reset.

(single-density systems only)
(dOUble-density systems only)
This version uses the memory area beginning
immediately after the standard DOS.
Although this version can not be loaded at
the same time as BASIC, it will run on any
system which can run the standard version of
BASIC.

This version is useful for modifying BASIC
while it is in RAM.

This version is useful for systems which
have memory in the F block and which can not
conveniently use the address space at zero
for the Monitor.

•

A special fifth version of the Monitor is also supplied:

M5700 5700H This version of the Monitor is designed
primarily for use in testing the RAM memory
which normally contains the DOS and Monitor
programs. This version of the Monitor is
990H bytes long, and the last 190H bytes
contain the standard HORIZON terminal
input/ouput routines. The origin of this
version was chosen so that it will reside at
the end of a 16K board origined at 2000H.

- NORTH STAR MONITOR - C-l



,
,
,

,
,

PERSONALIZING THE MONITOR

'rhe Monitor begins wi th a ser ies of jump instructions through
which it is entered a~d through which it links to the DOS
input/output routines. If the Monitor is not to be used with a
standard-origin DOS. then the appropriate address changes must be
made to these jump instructions. Since the Monitor is supplied
in several versions, note that the following discussion applies
to the version with origin at zero.

Address Instruction Purpose

eeeeH JMP INn' This is the initial entry point to the Monitor
eee3H JMP ZeeOH Jump to the DOS COUT routine
eee6H JMP ZeUH Jump to the DOS erN routine
eee9H JMP ZeZBH Jump to the DOS re-entry point

• eeeCH JMP Ze16H Jump to the DOS CONTe routine•,
· eee,'H JMP EBeeH Jump to the PROM bootstrap address,

Consult the GET'rING STARTED section for details of the required
routines.

,,

,

,-

,
•

The value at address 0012H is the ASCII code for the character to
be echoed when one of the following line editting control
characters is typed: control-Q, underline, left-arrow, rubout, or
delete. Initially, this value is set to the ASCII code for
underline. This value is analogous to the byte discussed in the
PERSONALIZING BASIC chapter of the BASIC section of this manual.

Provision has been made for adding as many as four user-defined
commands to the Monitor. Approximately 240H bytes after the
origin of the Monitor there is a block of seventeen (llH) bytes
of zeroes which lies at the end of the Monitor command table.
This provides space for adding up to four entries of four bytes
each to define user commands and allows for the zero byte which
always terminates the command table.

Each command definition requires four bytes: the first pair of
bytes contains the two-letter command name. The second pair of
bytes contains the address (low-order byte first) of the routine
to be called to execute the command. The program to implement
the command should preserve the stack pointer and re-enter the
Monitor with a RET instruction. No more than 30 bytes should be
pushed onto the Monitor stack during execution of the command.

* Except for the MS700 version of the Monitor which has links to
the input/output routines in its last 2S6-byte block (SF00
SFFF). If non-standard input/output routines are required for
your hardware configuration, then new routines which correspond
to the routines in the DOS at 2900-29FF must be loaded in the
region SF00-SFFF, and the MS700 jump table must be fixed
accordingly.

- NORTH STAR MONITOR - 0-1



EXAMPLE

This section will show how the Monitor can be used to modify
itself for the addition of a new command. The command will have
the name AA. and the code for the command has been generated onto
a disk file named CODE, assembled for execution beginning at
800H. The new version of the Monitor will be a version that runs
at 0.

.

+LF M~~~~ 4~~~

+LF CODE 4B~~

+GO M2D~~

>SM 4~~~.B~~ ~

>FM 4241 41
>FM 4242 41
>FM 4244 ~B

>OS

+CR NEWMON 1~

Load the standard version of the origin
zero Monitor to RAM.

Load the code for the new Monitor command
immediately after the copy of the Monitor
in RAM.

Load and execute the standard Monitor.

Find the zero block for command table
expansion. Locate the first block of
seventeen zeroes (assume for this example
that the location of the first zero in
the block is at address 4241H).

These commands add the command name AA to
the command table and set the start
address of the code for the command to be
B~~H.

Return to the DOS.

Create a new file, two blocks larger than
the standard Monitor, to contain the
modified version of the Monitor.

+TY NEWMON 1 ~ Set the type of the new Monitor file to 1
and set the go-address to ~ .

+SF NEWMON 4~~~ Save the expanded new Monitor to disk.

+GO NEWMON Load and execute the new Monitor

>AA Test the new command.

- NORTH STAR MONITOR - E-1



r

•

•,,,,

r,
;

INTRODUCTION

THE NORTH STAR BASIC SYSTEM

Version 6

by Jim Merritt

ABOUT NORTH STAR BASIC

North Star BASIC was created by Dr. Charles A. Grant and Dr.
Mark Greenberg of North Star Computers, Inc. This manual
describes version 6, an extended disk BASIC intended for use
with the North Star HORIZON computer or MICRO DISK SYSTEM.
Version 6 includes many features especially designed to
facilitate scientific, business, and industrial applications
programming. Of special note are North Star BASIC's
facilities for programmed error handling, automatic program
sequencing (CHAINing), formatted output, sophisticated
string handling, and machine language subroutine interface.
Both single line and mUltiple line user-function definitions
are supported, as well as mUltiple-dimension numeric arrays,
and complete disk file handling capabilities. Data files
may be accessed sequentially, randomly, or on a byte by byte
basis. North Star BASIC combines all these "extras" with
the usual features found in any reasonable implementation of
BASIC, to yield a unique development tool which promotes the
writing of powerful BASIC programs. Special design features
ease the task of "converting" programs written for other
BASIC systems so that they will run under North Star BASIC.
BASIC is also supplied in a version which uses the North
Star Hardware Floating Point Board (FPB-A). The two
versions, Floating Point and Non-Floating Point, are
identical in features and operation but the FPB version
executes arithmetic operations faster.

The North Star Version 6 BASIC software is intended for use
only with the North Star HORIZON computer or MICRO DISK
SYSTEM, and no license is granted for any other use.
Improved copies of Version 6, as they become available, may
be obtained for a nominal charge.

HOW THIS MANUAL IS ARRANGED

This manual attempts to meet the needs of both the novice
programmer, with little or no BASIC background, and the
experienced BASIC programmer, who needs only know the
partiCUlar characteristics of North Star BASIC.

For the expert, individual STATEMENTS, COMMANDS, and other
specific language features are covered in their own brief

- NORTH STAR BASIC - A-l



INTRODUCTION (Continued)

exposition sections. Each exposition consists of the
following:

SYNTAX GUIDE: This includes one or more brief models which
define the form of the STATEMENT or COMMAND within
North star's BASIC syntax.

ACTION: This tells what happens when the STATEMENT or
COMMAND is used.

EXAMPLES (or EXAMPLE PROGRAMS): These show the STATEMENT or
COMMAND in typical use. When the feature may take a
variety of forms, an attempt has been made to provide
several representative examples. Frequently, the
feature is illustrated in the context of a sample
program or program segment.

REMARKS: Whenever necessary, this section is included to
provide further information about the feature's use.

ERROR MESSAGES: Improper formation or usage of a language
feature will result in a BASIC error condition which
will lead to both the termination of the program or
COMMAND being processed, as well as an ERROR MESSAGE
sent to you. Wherever applicable, the common ERROR
MESSAGES associated with improper use of a given
feature, as well as their probable causes, are given in
the ERROR MESSAGES section for that feature. Note that
common error messages which apply generally to all
STATEMENTS and COMMANDS are described in APPENDIX 2.

SEE ALSO: Here you will find cross references to relevant
manual sections, study of which may help you more fully
understand a given feature.

The manual includes several appendices in the back, two of
which provide thorough indexing of all topics and features
in the manual. Other appendices contain charts, tables, and
detailed information useful to the practicing programmer.

For the beginner, there are many DISCUSSION sections, which
explain the underlying concepts and capabilities of North
Star BASIC. Programming methodology and strategy are also
examined in these sections. This is not to say that the
DISCUSSION sections should be ignored by experienced
programmers. On the contrary, experts will find much useful
information in these sections.

DISCUSSION and exposition sections have been interspersed
throughout the manual. Furthermore, an attempt has been
made to organize the manual so that elementary material is
presented first, while more advanced features and concepts

- NORTH STAR BASIC - A-2



,

··

,

:

,

,
·

INTRODUCTION (Continued)

are treated later. This has been done to facilitate the
beginner's likely "cover to cover" approach to manual
reading. While the manual is not intended as a course in
BASIC programming, a thorough front to back study of it will
yield much knowledge of programming in general, and
programming in North Star BASIC in particular. Those who
are absolute beginners in the field are referred to the
introductory computer and programming texts at local
libraries, book stores, and computer retail stores. If you
desire instruction on the fundamentals of programming and
computers, choose one such book and use it as a primer to
this manual.

Finally, for all users, APPENDIX 1 contains many sample
programs which illustrate the typical integration of North
Star STATEMENTs and other features and capabilities into
finished software.

·,
- NORTH STAR BASIC - A-3



BECOMING FAMILIAR wITH BASIC

DISCUSSION: LOADING BASIC

The procedure for loading and executing the North
Star Disk Operating System (DOS), as well as for
informing the software about your terminal type and
memory ability, is described in the DOS section of
the NORTH STAR SYSTEM SOFTWARE MANUAL.

Once the North Star DOS is loaded into RAM memory and
is operating on your computer, initiating BASIC is
very simple.

First, make sure that a diskette with BASIC on it is
correctly seated in your #1 drive (your only drive,
if you have just one!). Then, simply type

GO BASIC

in response to the DOS prompt. Don't
strike the RETURN key after typing GO
Star BASIC will respond after about 2
disk-drive activity by typing READY.
"in" BASIC, and are ready to proceed.

- NORTH STAR BASIC -

forget to
BASIC! North
seconds of
You are now

B-1



••·

·,

BECOMING FAMILIAR WITH BASIC (Continued)

DISCUSSION: COMMUNICATING WITH BASIC

This section assumes that you have gone through the
steps necessary to start a session with BASIC (see
DISCUSSION: LOADING BASIC). and have received a READY
message, indicating that BASIC is waiting to perform
directly (if it can) whatever instruction you give.
In order to make most efficient use of your sessions
with BASIC, you need to know several things about
communicating with the system.

You will type to the system using its primary
input/output (I/O) device. called the CONSOLE
TERMINAL. This device will include either a printing
mechanism or a video screen, as well as a keyboard,
similar to that found on a typical electric
typewriter. On a computer keyboard, however, there
are a few symbols and extra keys which may be new to
you. Note the position of "extra" keys, especially
the ones marked "CONTROL" (or "CN'rL", or something
similar), SHIfT, RETURN (or CARRIAGE RETURN) and also
at-sign (@) and underline ( ), respectively.
Finally, locate the "UPPER CASE" or "ALPHA LOCK" key.
(If your keyboard does not have lower case
capability, you need not worry about this last key.)

BASIC USES UPPER CASE

BASIC requires that instruction words given to it be
typed in upper case (capital) letters. For terminals
that generate lower case letters, it is necessary to
force the terminal to give upper case whenever a
letter key is struck. (This is so you won't have to
hold down the SHIFT key every time you want to type a
capital letter!) Find the mechanism which disables
the generation of lower case letters from your
terminal (sometimes called "UPPER CASE" or "ALPHA
LOCK"), and use it. (Throughout this discussion,
please refer to your terminal's own operating manual
in order to learn how to find and use any special
mechanisms or special keys mentioned here.)

TYPING TO BASIC

Try typing some nonsense to the system:

THX 1138

Be sure to strike the RETURN key after you finish
typing a line to BASIC. This is the signal for BASIC
to accept and process what you've typed. If you fail
to strike the RETURN key, BASIC will patiently wait

- NORTH STAR BASIC - B-2



BECOMING FAMILIAR WITH BASIC (Continued)

forever for you to type more! (Striking RETURN is
the same thing as saying "over" to a partner in a '-__
two-way radio conversation; it assures that each
party gets the full transmission from the other, and
that each waits for the proper time to speak.) Your
memory may be jogged once or twice later in this
manual about the necessity of that RETURN signal,
however, for the most part. it will be assumed that
you'll remember to end each line to BASIC by striking
the RETURN key. (The notation <CR> may also be used
to indicate the striking of the RETURN key,
especially in examples.)

BASIC should respond to your gibberish with the
message:

SYNTAX ERROR

In general, "SYNTAX ERROR" is BASIC's way of saying
"I don' t under stand you". I t usually means that you
typed the right thing incorrectly, or (as in this
case) the wrong thing altogether. This is an example
of an ERROR MESSAGE. Such messages are sent to you
in order to alert you to any difficulties which BASIC
encounters as it attempts to carry out your
instructions. The error message should provide a
clue as to the nature of the problem, and imply the
possible steps you might use to correct it.
(Correcting computer problems is called "debugging".
A problem itself is known as a "bug".)

Let's type something which BASIC will understand:

PRINT 3/2 <CR>

(Remember that the <CR> means to strike the RETURN
key! )

You should get the answer 1.5 on the terminal.

What happens if you make a mistake in your typing?
If you catch your error before striking RETURN, you
can do one of two things to correct the mistake:

l} You can erase characters, one by one, until you
have erased the erroneous one (s), then retype the
rest of the line from that point. In standard
versions of BASIC as shipped from the factory, you
should strike the underline ( ) key to erase the
last character typed. (This character sometimes
appears as a left arrow on older terminals.) An
underline will appear on the terminal to help you

- NORTH STAR BASIC - B-3



••

",

BECOMING FAMILIAR WITH BASIC (Continued)

keep count of how many characters you have erased
in this fashion. You can strike the underline key
as many times as it takes you to "back up" to and
erase the mistake. For example, if you typed

PRONT

you would strike the underline key 3 times. First
the T would be erased, then the N, and finally the
erroneous o. You would see

PRONT

on the terminal as evidence of this. Now type

INT

to finish the word. On the terminal, it will look
like

PRONT INT

but when you strike the RETURN key, BASIC will
know that this is what you really mean:

PRINT

If you have a CRT (video) terminal, you may wish
to use the backspace key to "back over" the
characters you erase, then retype over them.
North Star BASIC permits this.

2) Using the one-character erase provided by the
underline key is fine when the error is only one
or, at most, a few characters back, but what
happens when you type in a very long line and
discover a mistake in the first part of it? To
cancel a whole line before the <CR> has been
struck, just type an at-sign (@). The terminal
will automatically move to the next line, where
you may begin typing afresh.

PRINR "AN EARLY ERROR@ {this line cancelled}
PRINT "ALL OK"

North Star BASIC provides more sophisticated ways to
correct your typing errors, in the form of a LINE
EDITOR. After learning a little more about BASIC and
programming, see DISCUSSION: THE LINE EDITOR for
further details.

·· - NORTH STAR BASIC - B-4



BECOMING fAMILIAR WITH BASIC (Continued)

CONTROL CHARACTERS

The purpose of the "CON'rROL II or "CN'l'L Il key is similar
to that of the SHIFT key. However, whereas SHIFT
causes upper case letters and punctuation to be
generated when it is held down during typing. the
CONTROL key, when held down during typing, causes
generation of a new, largely invisible set of
characters which are unique to computer terminals.
These are the CONTROL CHARACTERS. For the most part,
there is a control character "alphabet" from A to Z.
You will find that many characters are useful in
North Star BASIC, especially control-C, the "PANIC
BUT;rON", whose purpose and function is descr ibed in
its own DISCUSSION section. Try using control-C now.
Hold down the CONTROL key and then type C at the same
time (then let up on both, of course.) You should
get the message:

STOP

The reason why this happens is explained elsewhere.
Note that many control characters (such as control-P)
are ignored by BASIC. BASIC rings the terminal's
bell (or beeps its beeper) when it ignores a
character. Only certain contro"l characters are
significant to BASIC; other sections (especially that
concerning the LINE EDITOR) specify which ones.

For those whose video terminals do not include an
explicit Ilbackspace" key, as mentioned earlier in
this discussion, note that control-H is a substitute
for "backspace".

- NORTH STAR BASIC - B-5



BECOMING FAMILIAR WITH BASIC (Continued)

DISCUSSION: ENTERING A BASIC PROGRAM

The rules for entering a new BASIC program at the
console terminal are described in this section. An
annotated example of a program-entry session follows
the description of the rules.

A PROGRAM is a sequence of legal BASIC statements.
One or more statements may be entered at a time on a
PROGRAM LINE. This program line must be preceded by
a LINE NUMBER, an integer in the range 0 to 65535.

When entering program lines. you signal the computer
to accept a newly-entered line by strikng the RETURN
key.

1) If the line number of the newly-entered line
doesn't match a line number in any existing
program line, then the line is simply ADDED to the
program.

2) If the line number of the newly-entered line
duplicates that of an existing line, the new line
REPLACES the old line of that number.

3) If the RETURN key is struck immediately after
typing only a line number, and the line number
corresponds to that of an existing program line,
that line is DELETED from the program.

4) Typing in the command SCR (with no line number)
results in the immediate erasure of the entire
current program.

5) To store a program onto diskette for the very
first time, the NSAVE command is used. Updating
the program afterwards is accomplished with the
SAVE command.

The RUN command causes BASIC to begin executing the
current program. This session also includes use of
the LIST and CAT commands, which print a LISTing of
the current program, and a CATalog of the names of
programs and other files on a diskette, respectively,
to the terminal. Note that commands are typed in
without line numbers, and are executed immediately.

Further details on the PRINT statement, and the CAT,
LIST, NSAVE, SAVE, SCR, and RUN commands are
available in later sections of this manual.

The content of the following dialogue between person

- NORTH STAR BASIC - B-6



BECOMING FAMILIAR WITH BASIC (Continued)

and computer (in the left-hand column) has oeen
chosen to illustrate the simple rules for entering a
BASIC program and saving it on diskette.

You are invited to take the programmer's role in the
"script". The lines which you type into the system
always have the symbol <CR> at the end. This is to
remind you to strike the RETURN key after typing each
line of input. All the other lines in the "script~
are BASIC's responses to you. To help you better
understand what is going on with each new line in the
dialogue. comments are provided in the right-hand
column. These are NOT part of the program, and you
should not attempt to type anything from that column
to BASIC.

{DIALOGUE) {Comments}

READY
SCR<CR>
READY
LIST<CR>

BASIC is READY to work with you.
Erases any previous program.
BASIC's response to your SCR.
You want to see the current program.
There is none.

READY BASIC ends its program LISTing.
10 PRINT 6/4<CR> You enter 2 program lines (note
20 PRINT "WELCOME TO BASIC"<CR> required line numbers).
5 PRINT "FIRST PROGRAM"<CR> 'I'his line is out of sequence.
LIST<CR> Check to see what you've done.

5 PRINT "FIRS'r PROGRAM j
'

10 PRINT 6/4
20 PRINT IIWELCOME TO BASIC"
READY
RUN<CR>

FIRST PROGRAM
1.5

WELCOME TO BASIC
READY
10<CR>
LIST<CR>

5 PRINT "FIRST PROGRAM"
20 PRINT "WELCOME TO BASIC"
READY
30 PRIN'r 2+2<CR>
LIST<CR>

5 PRINT "FIRST PROGRAM"
20 PRIN'f "WELCOME TO BASIC"
30 PRINT 2+2
READY

Program LISTS out. Note that
BASIC has put program lines in
proper sequence.

Now. RUN the program and see results!

Note that quotes aren't printed.
Note that you get RESULT of 6/4.
Again, no quotes.

Typing the line number erases line.

Line 10 is now gone.

A new line, 30, is added.

New line 30 is put in its proper place.

- NORTH STAR BASIC - B-7



·,,
•,, BECOMING fAMILIAR WITH BASIC (Continued)

RUN<CR> See how the modified program RUNs.

NOW, check to see that it's there.

Replace line 30. Current program
is now DIFFERENT from one on disk.

It has been added to the diskette.

Save the program into new file "FIRST".

Get listing of programs on diskette.
Depending on which diskette you use,

you may get a different CATalog.

Again, you get result; here, of 2+2

o
1 2000

o
1 2000
2

10 0
50 0

100
50 0

4 0

4
9

4
9

34

FIRST PROGRAM
WELCOME TO BASIC

4
READY
CAT<CR>
DOS
BASIC
READY
NSAVE FIRS-r<CR>
READY
CA1'<CR>
DOS
BASIC
FIRST
READY
30 PRINT 2-2<CR>
LIS'r<CR>

r,
,

i·

··

5 PRINT "FIRST PROGRAM"
20 PRINT "WELCOME TO BASIC II

30 PRINT 2-2
READY
NSAVE FIRS1'<CR>
ARG ERROR
READY
SAVE FIRST<CR>
READY
SCR<CR>
READY
LIST<CR>

LISTing verifies that an addition
has been made. (Though we do it
for explanation. you need not
LIST after every change.)

Attempt to update the disk file.
NSAVE is WRONG command to update.
Use it only once for each program file.
From then on, use SAVE.
Note that, with save, update is OK.
Erase the current program.

Verify that it is gone.

READY
LOAD FIRST<CR>
READY
LIST<CR>

5 PRINT "FIRST PROGRAM"
20 PRINT "WELCOME TO BASIC"
30 PRINT 2-2
READY
RUN<CR>

Now, get it back from diskette!
When writing programs, SAVE often to

be sure that disk file holds
most current version!

Note that the program in "FIRST"
has been retrieved. If it had not
been on a disk file, it would have
had to have been retyped after SCR.

, FIRST PROGRAM
WELCOME TO BASIC

o
READY

Verify that it RUNs.

And now, move onward!

- NORTH STAR BASIC - B-8



BECOMING FAMILIAR WITH BASIC (Continued)

DISCUSSION: SOME BASIC CONCEPTS

The North Star BASIC system has two modes of
operation:

DIRECT MODE. in which lines typed to the system
are executed without delay~

PROGRAM MODE in which the system executes
instructions which have been stored previously
in the form of a PROGRAM.

Prior to learning how to work with BASIC in these
modes, you must understand certain concepts and
terminology, which are explained in this~section.

A COMMAND is a special type of instruction which may
be executed only in direct mode. never as part of a
program. Commands generally provide services which
are not meaningful or useful while a program is
RUNning.

For example. the command LIST generates a listing of
the program currently in the BASIC program/data area
of memory. (This is called the CURRENT PROGRAM.) It
is a rare application which requires a program to
list itself, and so the LIST function is a command.
Each command is described in detail in its own
section of the manual.

NOTE: The following paragraph uses advanced
terminology which is defined elsewhere in the manual.

String and numeric arguments to commands may only be
literals. The use of other types of expressions as
arguments is not allowed. Moreover, disk file names
in commands are not quoted. These restrictions on
argument representation are the biggest difference
between commands and direct statements, which will be
discussed later.

A STATEMENT is a BASIC instruction which may be used
as part of a PROGRAM. Typical among statements are
PRINT, which causes information to be output to a
terminal, and REM, which Ildoes nothing", but provides
a way for the programmer to insert REMarks about the
workings of the program into the program itself.

Statements begin with a KEYWORD from which the
statement derives its name. (PRINT is both a keyword
and a statement name.) The keyword may be followed
by ARGUMENTs and other keywords. An argument is a

- NORTH STAR BASIC - B-9

,



~

t,
r,
I

BECOMING FAMILIAR WITH BASIC (Continued)

piece of information on which the statement operates,
or which is used to modify the operation of the
statement. For example, the string literal "HI" is
the argument of the following statement:

PRINT "HI"

A BASIC program is structured as a sequence of LINEs,
each containing one or more statements. A line
starts with a LINE NUMBER, which is an INTEGER (that
is, a whole number) in the range 0 to 65535. A
statement follows the line number. and the
combination is called a PROGRAM LINE. A typical line
is

70 PRINT uTHIS IS ONE STATEMENT. 11

More than one statement may exist on a program line,
as long as individual statements on that line are
separated by a backslash (\) character. Here is an
example of a mUltiple-statement program line with
three statements:

835 h = 0 \ B ~ 0 \ REM INITlhLIZE h hND B

Many statements may be executed in direct mode in
order to get immediate results. This is accomplished
by typing a statement without preceding it with a
line number. Such a statement is called a DIRECT
STATEMENT, and is executed as soon as it has been
completely typed (indicated by striking the RETURN
key). PRINT is such a statement. If, for example,
you type

PRINT 3+3

into BASIC, you will immediately get back 6 on the
terminal. This ability to use PRINT in direct mode,
and therefore immediately generate the results of
arithmetic expressions is sometimes called
"calculator mode". As long as you put the keyword
PRINT in front of numeric expressions, you may use
your computer as a powerful desk-type calculator.
This will have no effect on the current program.

Direct statements should not be confused with
commands. A direct statement differs from a command
in that it may also be executed as part of a program,
by being included on a program line, whereas a
command may only be executed in direct mode. Each
command and statement has its own rules as to what
constitutes its proper form and when it can be used

- NORTH SThR BASIC - B-10



BECOMING FAMILIAR WITH BASIC (Continued)

correctly.

The following statements may be executed as direct
statements:

DI~l

IF ••• THEN
PRINT
LET
RESTORE

IF ••• THEN ••• ELSE
FILL

OUT
CREATE
DES'fROY

- NORTH STAR HASIC -

OPEN
CLOSE
READ4

WRITE4
CHAIN

H-11



COMMANDS

COMMAND: LIST
LIST <line number interval>
LIST <device number expression>
LIST <device number expression>, <line number interval>

hatch (#) with a single digit from ~ to 7,

Prints the text of the current program. The optional
device expression is formed by following a cross-

ACTION:

correspondIng to an active output device. If no
device is given, device #0 (the console terminal) is
assumed. If the line number interval is specified,
only the program lines numbered within that interval
will be LISTed. The interval is formed as follows:

<single line number> only the specified line
number will be LISTed.

<single line number>, all lines from the
specified line number to the end of the program
will be LISTed.

<line number>, <line number> all program lines
from the first specified line number to the second
will be LISTed.

If no interval is given, the entire program will be
LISTed.

EXAMPLES: LIST
LIST 1888
LIST 38,
LIST 188,288
LIST U
LIST #3,38,788

REMARKS: The 2nd line number in the interval (if given)
should be greater than or equal to the first.

For the convenience of users with CRT screens, the
program listing may automatically be "paged". Refer
to DISCUSSION: PERSONALIZING BASIC for details.

ERROR
MESSAGES: LINE NUMBER ERROR

One or both of the lines specified in the line number
interval do not exist within the current program.

OUT OF BOUNDS ERROR
One or both of the line numbers specified in the line
number interval do not lie in the range e to 65535.

- NORTH STAR BASIC - C-l



COMMAND:

ACTION:

EXAMPLES:

REMARKS:

COMMANDS (Continued)

DEL <line number>, <line number>

All program lines within the given interval are
DELeted from the current program. The second line
number must be strictly greater than the first.

DEL 10,20
DEL 1~~~,1~75

DEL is used to DELete whole blocks of program
lines at one time. If it is desired to remove only
one line, just type the appropriate line number,
followed immediately by striking the RETURN key.

All variables are cleared as a result of DEL (or any
other command which modifies the current program) .

Unless the DELeted lines have been SAVEd as part of a
program on diskette, they will be permanently lost
and will have to be re-entered manually if needed
later.

ERROR
MESSAGES: ARG ERROR

The second line number in the interval is not greater
than the first.

LINE NUMBER ERROR
One or both of the lines specified in the line number
interval do not exist within the current program.

OUT OF BOUNDS ERROR
One or both of the line numbers specified in the line
number interval are less than 0 or greater than
65535.

SEE ALSO: DISCUSSION: COMMUNICATING WITH BASIC
COMMAND: SCR

- NORTH STAR BASIC - ~2



I,,

,

COMMAND:

ACTION:

COMMANDS (Continued)

SCR

SCR erases (SCRatches) the current program and any
existing variables from the user workspace.

EXAMPLE: SCR

REMARKS: SCR is used to clear the workspace prior to entering
a new program.

I,,,,
•;·

,
•,
•

Only the current program is affected. Any co?ies of
the program existing on diskette remain unaltered.

Unless a copy of the program exists on diskette or
some other storage medium, the only way it can be
retrieved after SCR is to retype it by hand.
Therefore, it is important to make copies of the
program on diskette before using SeR, if that
program, or parts of it, will be used later.

ERROR
MESSAGES: None.

,,
·•,,,

i

·,
I

SEE ALSO: COMMAND: SAVE
COMMAND: NSAVE
COMMAND: LOAD
COMMAND: DESTROY
COMMAND: DEL

- NORTH STAR BASIC - C-3



COMMAND:

ACTION:

EXAMPLES:

REMARKS:

COMMANDS (Continued)

REN
REN <line number>
REN <line number>, <increment value>

The entire current program is RENumbered. The first
line in the program is given the line number
specified in the REN command (10 if no line number is
specified). If a line number is given, then an
optional increment value may be added to the command.
All line numbers will automatically be separated by
the given increment value (10, if no increment is
specified). The increment value, if used, must be an
integer, from 1 to 32767.

REN
REN 1000
REN 1000,100

After the command

REN 100

program A will be changed to program B:

program A

1 REM READS AND PRINTS DATA
2 REM IN LINE 1000
3 READ Z
10 IF Z<0 THEN 2000
70 PRINT Z \ GOTO 3
1000 DATA 1,2,3,-1
3000 REM LINE 2000 HASN'T YET BEEN WRITTEN

program B

100 REM READS AND PRINTS DATA
110 REM IN LINE 1000
120 READ Z
130 IF Z<0 THEN 2000
140 PRINT Z \ GOTO 120
150 DATA 1,2,3,-1
160 REM LINE 2000 HASN'T YET BEEN WRITTEN

RENumbering is usually done to produce a uniform
increment value between statement numbers so that
inserting new statements becomes more convenient.

It is not possible to specify an increment value
without giving a line number as well, but a line
number may be specified without an accompanying
increment value, in which case the increment is

•

- NORTH STAR BASIC - C-4

•·



··•,,,

;

·· ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

assumed to be Ie.

Note that, while program references to line numbers
(such as those found in GOTO, GOSUB, RESTORE, and
similar statements) are modified to reflect the
program"s new line number structure, references to
line numbers in REM statements remain unchanged.

If a GOTO, GOSUB, RESTORE, or similar statement in
the original program references a non-existent line
number, that reference will remain unaltered after a
RENumbering operation.

(If any of the following errors occurs, no
RENumbering is performed.)

OUT OF BOUNDS ERROR
This error is produced in any of the following
situations:

1) The line number specified in the command is
greater than 65535:

2) The increment value is greater than 32767, or less
than 1:

3) The combination of starting line number and
increment value would result in a program where
some line numbers would necessarily be greater
than 65535.

ARG ERROR
The line number or the increment value specified is
not a positive integer, or the two values are not
separated by a comma.

COMMAND: AUTO

- NORTH STAR BASIC - C-5



COMMAND:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

AUTO
AUTO <initial line number>
AUTO <initial line number>, <increment value>

Initiates automatic line numbering mode, in which
BASIC will automatically generate new line numbers
for successive lines of program text. The specified
line number will be the first line number used in
auto-mode. Each successive automatically-supplied
line number will be incremented from the last by the
specified increment value. The increment value must
be an integer in the range of 1 to 65535. An
increment value may not be supplied unless an initial
line number is also provided. When an initial line
number or increment value is not given, it is assumed
to be 10.

AUTO
AUTO 400
AUTO 1000,100

In automatic line numbering mode, a new line number
will be printed at the start of every line.

Auto-mode will persist until one of the following
occurs:

a) a carriage return is typed immediately after the
line number;

b) a line without a line number is typed (by using
the North Star BASIC line-editing capabilities to
delete the line number from the beginning of the
line) ;

c) the next automatically-generated line number would
be greater than 65535.

Note that if the "automatic" line numbers overlap
existing lines in the current program, the existing
lines will be REPLACED by the new ones.

OUT OF BOUNDS ERROR
Either the initial line number, the increment value,
or both are greater than 65535 or less than 0.

ARG ERROR
Either the initial line number, the increment value,
or both are negative, or non-integers.

COMMAND: REN

,
..

- NORTH STAR BASIC - C-6



,

COMMAND:

ACTION:

COMMANDS (Continued)

CAT
CAT <drive number>
CAT <output device expression>
CAT <output device expression>, <drive number>

A catalog listing of the files on the diskette
loaded in the specified disk drive is printed on the
specified output device. The output device
expression must consist of a cross-hatch (#) followed
by a single digit from ~ to 7. The drive number must
be a single digit from 1 to 4. If the output device
expression is omitted, the catalog listing is sent to
the console terminal (device #0). If the drive
number isn't specified, it is assumed to be drive #1.

EXAMPLES: CAT
CAT 3
CAT U
CAT 42,3

{drive #I's catalog to console}
{drive #3'5 catalog to console}
{drive #I's catalog to device tl}
{drive #3'5 catalog to device #2}

REMARKS: The listing produced is identical to that
obtained through use of the DOS LI command.

Like the program LISTing, the CATalog may be "paged",
but this is a function of the DOS rather than of
BASIC. See the DOS section of this manual for
details.

The user should be sure that the output device
expressions and/or drive numbers (when specified)
refer to existing devices and drives, respectively.

ERROR
MESSAGES: HARD DISK ERROR

This error occurs under the following circumstances:

1) The specified drive is not installed in the
system.

2) The power to the specified drive is not on.
3) The diskette is not properly seated within the

specified drive (drive door is open, etc.).
4) There is no directory on the diskette in the

specified drive.
5) The directory on diskette has been destroyed.

FILE ERROR
The drive number specified is greater than 4.

SEE ALSO: DOS section of this manual.

- NORTH STAR BASIC - C-7



COMMAND:

ACTION:

COMMANDS (Continued)

SAVE <file name>

The current program is permanently SAVEd into an
existing BASIC program (type 2) file on diskette.

,

;

EXAMPLES: SAVE PROG
SAVE TEST7,2

{PROG is on diskette in drive tl}
{TEST7 is on diskette in drive #2}

REMARKS: The specified file must be of sufficient size
to hold the program for the SAVE to be successful.

It is possible to SAVE the null program onto a
program file. (This can be accomplished by using the
SCRatch command immediately prior to SAVE.) This
effectively "erases H any program which was previously
stored in that file.

SAVE doesn't change the current program/data space in
any way, so it is possible to use the CONT command
after SAVE should one be performed during a program
interruption caused by control-C or the STOP
statement.

ERROR
MESSAGES: OUT OF BOUNDS ERROR

The current program is too big to fit in the
specified file.

FILE ERROR
The specified file name is improper. It
a) is too long:
b) contains illegal characters (i.e. comma or blank);
c) specifies an illegal drive number.

The FILE ERROR also occurs when the diskette in the
specified drive is write protected.

ARG ERROR
The specified file does not exist.

TYPE ERROR
The specified file is not a BASIC program (type 2)
file.

HARD DISK ERROR
Refer to COMMAND: CAT.

SEE ALSO: COMMAND: NSAVE
COMMAND: LOAD
DOS section of this manual.

- NORTH STAR BASIC - C-B



•••·

•·-•,·•,
•

·-

·•,
-
,
•··

:

"

COMMAND:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

NSAVE <file name>
NSAVE <file name> <file size>

The specified BASIC program file is created on
diskette to the desired size in file blocks, and the
current program is SAVEd into it. If no file size is
specified, three file blocks are added to the actual
size of the current program, and the resulting number
is taken as the file size. The density of the file
created is set to be the same density as that of the
file directory on the diskette.

NSAVE PROGRAM
NSAVE GREEN,2 25
NSAVE MPG,3
NSAVE BIGPROG 5~

NSAVE is merely a special form of the SAVE command,
and is used to SAVE a program for which a diskette
file does not yet exist.

A FILE BLOCK is 256 bytes of information. Note that
in dOUble-density format, two file blocks are stored
on each disk sector. In single-density format, a
file block and a disk sector are equivalent in size.

When doing an NSAVE, the size specified in creating
the file should allow for the eventual expansion of
the program. When a program becomes too large to be
SAVEd in a file, then a longer file will have to be
used.

An attempted NSAVE may result in any of the errors
possible when using SAVE. The following are unique
to NSAVE:

ARG ERROR
In addition to its causes under SAVE, an ARG ERROR
may also occur during an NSAVE if the specified file
already exists on diskette.

FILE ERROR
In addition to its causes under SAVE, a FILE ERROR
may occur during an NSAVE if there is not room enough
on the diskette for the new program file.

COMMAND: SAVE
COMMAND: PSIZE

··,••I
·i

- NORTH STAR BASIC - C-9



COMMAND:

ACTION:

COMMANDS (Continued)

LOAD <file name>

The BASIC program contained in the specified file is
LOADed into the program/data area and becomes the
current program.

EXAMPLES: LOAD PROG3
LOAD TEST8,2

{load from drive il}
{load from drive *2}

REMARKS: The specified file must be of type 2.

The successful LOAD command performs a SCRatch of the
program/data area before LOADing the program.

ERROR
MESSAGES: TOO LARGE OR NO PROGRAM ERROR

Either the program in the specified file is too big
to fit in the program/data area, or the file does not
contain a valid BASIC program. In either case, a
SCRatch of the program/data area occurs. (See
COMMAND: MEMSET and DISCUSSION: PERSONALIZING BASIC
for information on how to increase the size of
BASIC's program/data area in order to avoid this
error.)

HARD DISK ERROR
Refer to COMMAND: CAT. Depending on the point during ~
the LOAD operation at which such an error occurs, a
memory SCRatch may be performed.

If an attempted LOAD results in any of the following
errors, no change in the program/data area occurs.
Specifically, all variables will retain their values,
the current program will remain, and, if the abortive
LOAD occurs during a program whose execution has been
interrupted by control-C or the execution of a STOP
statement, the CONT command may still be used to
resume program execution.

FILE ERROR
See COMMAND: SAVE

ARG ERROR
See COMMAND: SAVE

TYPE ERROR
See COMMAND: SAVE

SEE ALSO: COMMAND: SAVE
COMMAND: SCR

- NORTH STAR BASIC - C-10
•



COMMAND:

ACTION:

EXAMPLES:

REMARKS:

COMMANDS (Continued)

APPEND <file name>

APPENDs the BASIC program in the specified
diskette file to the end of the current program.
(The lowest line number in the specified program must
be greater than the largest line number in the
current program in order for an APPEND to be
successful. )

APPEND MYPROG
APPEND TESTER,2

If there is no current program, APPEND acts like
LOAD.

A successful APPEND will always clear all variables
in the program/data area.

,

I

(

i,

·,

·,
I

-

·,

ERROR
MESSAGES: LINE NUMBER ERROR

The lowest number in the program to APPEND is less
than or equal to the highest number in the current
program.

TOO LARGE OR NO PROGRAM ERROR
Either there is not a valid BASIC program in the
specified file, or the program which would result
from the APPEND operation is too large to fit into
available memory. In the latter case, the current
program remains unmodified.

Please refer to COMMAND: LOAD and COMMAND: SAVE for
details on the following errors which may also occur
during an attempted APPEND:

HARD DISK ERROR
FILE ERROR
ARG ERROR
TYPE ERROR

"··••,
;

- NORTH STAR BASIC - C-ll



COMMAND:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

RUN <line number>

RUN initiates execution of the current program.
If the optional line number is included, execution
begins at that program line: otherwise, if no line
number is specified, execution begins at the first
line in the program.

RUN
RUN 100

Any variables which were assigned values before
RUN is used are cleared prior to starting the
program. This means that all numeric variables are
reset to e: existing strings and arrays are
destroyed, and will be initialized to spaces and
zeroes, respectively, if and when created during the
execution of the current program. Note that any
variables set in direct mode before the RUN will also
be cleared as a result of the RUN command.

NO PROGRAM ERROR
RUN was used before entering or LOADing a program.

LINE NUMBER ERROR
The optional line number included as part of the RUN
command is not in the current program.

ARG ERROR
The optional argument is not a legal line number.

COMMAND: CONT
STATEMENT: CHAIN

,

- NORTH STAR BASIC - C-12



,

·•,
··
••·

·•·,
•
•·

•

··
•·
,·
;

.~

COMMANDS (Continued)

DISCUSSION: CONTROL-C, THE PANIC BUTTON

Occasionally, you may desire to interrupt a program s
execution at some random point while it is RUNning.
This may be because you wish to repair a program
error, or because you do not want program execution
to continue to completion.

Your "PANIC BUTTON" is "control-e". This "stop
everything" signal is sent to the computer whenever
you hold down the "control" key then press the "e"
key at the same time on your console terminal.

If a program is RUNning, the currently executing
statement will finish, and the message

STOP IN LINE XXXXX

will be printed on the terminal, where xxxxx will
actually be the line number where execution stopped.

If you are LISTing a program when control-C is
pushed, the line being listed will be completed, and
the message

STOP

will be sent to the console terminal .

Whenever you use control-C, you will be returned to
BASIC's direct mode, where you are free to examine
the program and variables.

Perhaps you may someday "PANIC"-out of a long-running
program because you fear that it is caught in an
"endless" loop. However, upon examination of the
program and its variables, you discover that the
program is operating correctly, but just takes a long
time to finish. In this and similar instances, you
may use the CONT command to resume execution at the
point where the program was interrupted by control-C.

(You may not use CONT if, during the interruption,
you modify any part of the program text.)

BASIC may be instructed to ignore the control-C
signal. This is accomplished by changing certain
internal data in the BASIC interpreter itself, a
procedure described in DISCUSSION: PERSONALIZING
BASIC. Because it involves modification to BASIC and
also makes it impossible to stop an improperly
written "runaway" program without somehow stopping

•
- NORTH STAR BASIC - C-13



SEE ALSO:

COMMANDS (Continued)

the computer altogether, you should leave control-C
enabled until your program is fully debugged.

COMMAND: CONT
STATEMENT: STOP
DISCUSSION: SOME BASIC CONCEPTS
DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - C-14



,
,
•
:

i

;

-
,

COMMAND:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

CONT

CONT causes execution of a previously RUNning BASIC
program to CONTinue after the execution of a STOP
statement or after a control-C interruption.
Normally, execution will continue at the program
statement immediately following the last statement
executed. (See REMARKS, below, for exceptions to
this rule.)

10 PRINT "THIS LINE PRINTED AFTER RUN"
20 STOP
30 PRINT "THIS LINE PRINTED AFTER CONT"

CONT may not be used if the previously running
program has stopped because of an error or the
execution of an END statement. Also, CONT may not be
used if any modification has been made to any line of
the current program since the interruption occurred.

It is possible to use direct statements during the
interruption caused by STOP or control-C, for
example, to examine or change variable values. After
doing so, you may use CaNT to CONTinue with the
program.

If the stop was caused by control-C interruption
during the execution of an INPUT statement, then
execution will continue at the beginning of that
INPUT statement.

CONTINUE ERROR
This error occurs because of one of the following
four reasons:

1) The program has stopped because it executed an END
statement.

2) It has stopped because of a program error.

3) The program has been changed between the time it
stopped and the time you typed CaNT.

4) The current program has not yet been RUN.

DISCUSSION: CONTROL-C, THE PANIC BUTTON
STATEMENT: STOP

- NORTH STAR BASIC - C-15



COMMAND:

ACTION:

EXAMPLE:

REMARKS:

COMMANDS (Continued)

PSIZE

The size of the current program in file blocks
is printed on the console terminal.

PSIZE

The PSIZE command may be used to determine how many
file blocks on diskette will be required to store the
current program. This figure is helpful in creating
new program files, and in using the NSAVE command.

The approximate number of bytes in the BASIC program
may be calculated by multiplying the number obtained
through PSIZE by 256 (the number of bytes in a file
block) •

•,

ERROR
MESSAGES: None.

SEE ALSO: COMMAND: NSAVE

- NORTH STAR BASIC - C-16

,



COMMANDS (Continued)

COMMAND: MEMSET <memory address>

address, which must be an integer constant in the
range of 0 to 65535.

The upper bound of the program/data memory region
available to BASIC is changed to the specified

ACTION:

EXAMPLES: MEMSET 24575
MEMSET 32767
MEMSET 40959

{last memory cell is SFFFH}
{last cell is 7FFFH}
{last cell is 9FFFH}

REMARKS: Note that the address specified in a MEMSET command
is expressed as a decimal (base l~) number.

All variables in the program/data area are cleared
after MEMSET, but any current program remains intact.

MEMSET also modifies the copy of BASIC in RAM so
that, if an co ies of it are made, the will assume

'-./'

i
•

t e new memory conflguratlon w en execute .

ERROR
MESSAGES: ARG ERROR

The memory address specified as upper bound does not
contain usable memory.

OUT OF BOUNDS ERROR

1) The address is larger than 65535.

2) If there is a current program, the specified upper
bound would lead to a program/data area too small
to hold it.

3) If there is no current program, the_specified
upper bound implies elimination of the
program/data area altogether.

SEE ALSO: DISCUSSION: PERSONALIZING BASIC

.,

I,
- NORTH STAR BASIC - C-17

,



COMMANDS (Continued)

STATEMENT: LINE <numeric expression>
LINE #<device expression>, <numeric expr.>

ACTION:

EXAMPLES:

REMARKS:

The line length for the specified I/O device is
changed to the value of the numeric expression, which
must be an integer from l~ to 132. The device
expression must be numeric, and evaluate to an
integer from 0 to 7. If no device expression is
specified, the desired device is assumed to be #0
(the console terminal).

100 LINE 132
70 LINE L (X) +40
250 LINE n,B
900 LINE #D(Q) , 64

A fixed-length input/output line is a necessity because
BASIC must keep track of the current PRINT position
on the terminal or screen in order for the TAB
function to work correctly. Use of the LINE
statement allows the user or programmer to adjust
this line length to the requirements of a particular
terminal device. For example, many video-display
boards provide for 32 or 64-character lines, while
integrated terminals usually have 80 character
positions to a line. Printer units have line lengths
ranging from 40 to 132 characters.

Different line lengths may be in effect for different
terminals at anyone time.

If a line of output information is longer than the
current line length for the given device, the line
will be "split" at the line length boundary and the
rest of the output will be continued on the next
line. (A carriage return is automatically generated
by BASIC to advance the rest of the output to the
next line.)

If an attempt is made to INPUT more characters than
are allowed on one line, a "LENGTH ERROR" occurs.

LINE may be used as a direct statement.

Line lengths set by a LINE statement remain in effect
until the session with BASIC is terminated. A line
length of 132, for example, will remain in effect
even after the program which set it has ENDed.

When BASIC "comes up", the initial length of device
#~ (the console terminal) is 80 characters. The
initial value for each of the seven other possible

- NORTH STAR BASIC - C-18 ,,



COMMANDS (Continued)

system I/O devices is also se. These initial values
may be changed using procedures which are covered in
DISCUSSION: PERSONALIZING BASIC.

ERROR
MESSAGES: OUT OF BOUNDS ERROR

The device number or line length specified in the
LINE statement is out of range.

.
SEE ALSO: DISCUSSION: FUNCTIONS (built-in: TAB)

STATEMENT: INPUT
STATEMENT: INPUTI
DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - C-19



COMMANDS (Continued)

COMMAND: BYE

ACTION: The current session with BASIC is terminated, and
control returns to the DOS.

EXAMPLE: BYE

REMARKS: The BYE command does not affect BASIC's program/
data area in any way -- the current program and any
data associated with it remain intact. It is
possible to return to BAStC and resume work with the
current program later, provided that the memory
containing BASIC and its program/data area is not
disturbed in the meantime.

ERROR
MESSAGES: None.

SEE ALSO: DISCUSSION: SPECIAL ENTRY POINTS

- NORTH STAR BASIC - C-29



USING NUMBERS

DISCUSSION: USING NUMBERS

This section describes numbers and how to use them in
conjunction with the standard version of North Star
BASIC. Those with non-standard versions of BASIC
should read the section called DISCUSSION: NON
STANDARD VERSIONS OF BASIC which provides extra
information applicable to their individual
situations.

CONSTANTS

Numbers are represented within BASIC programs much as
they are written in everyday usage. Here are some
numbers as they might be written in a typical BASIC
program:

o
.1

347
-8

-33.333
123.4567

.00176
-.3

1. 003
0.2

Numbers such as these are called NUMERIC CONSTANTS.

Constants may also be written in SCIENTIFIC NOTATION
(also called EXPONEN'rIAL FORMAT or E-FORMAT). This
is a way to represent very small or very large
numbers without having to deal with leading or
trailing zeroes which can make a number seem
uncomfortably long. Here are the same numbers as in
the examples above, but written in scientific
notation:

eE+00
lE-01

3.47E+02
8E+0e

-3.3333E+01
1.234567E+02

1. 76E-03
-3E-el

1. 003E+00
2E-01

A number in scientific notation has a MANTISSA part
and an EXPONENT part. These are separated by the
letter E, which may be read as "times Ie to the power
of u

• Thus, l.76E-03 would be read as "1.76 times 10
to the power of -3".

PRECISION

Numbers in the standard version of North Star BASIC
are stored with a-digit preclslon. Other precisions
are available -- see DISCUSSION: NON-STANDARD
VERSIONS OF BASIC for details. North Star BASIC uses
the most accurate form of microcomputer arithmetic
available: Binary-Coded-Decimal (BCD) -- see
DISCUSSION: COMPATIBILITY WITH OTHER BASICS. All
arithmetic operations are rounded to 8 digits in the
standard version of North Star BASIC -- e.g., the sum
of .12345678 and .011111111 would be rounded to

I

, --./,,,,
,.,,.

- NORTH STAR BASIC - D-l



USING NUMBERS (Continued)

.13456789, since .134567891 requires 9 digits.

EXAMPLE: FRACTIONS. what is the decimal
representation of 2/3? An endless string of 6'g
after the decimal point is the only correct answer.
However, when doing decimal arithmetic, both people
and computers round off the long fraction to a
reasonably accurate (but not completely accurate)
number. BASIC. for example, will round 2/3 to
.66666667. Notice that the total number of digits is
now B. It is impossible to get a more accurate
representation of 2/3 in standard North Star BASIC.
The fraction 1/2, On the other hand, needs only a
single digit (.5) to represent it exactly!

EXAMPLE: MIXED DECIMAL FRACTIONS WITH LARGE WHOLE
PARTS. Eight-digit precision also means that the
number 1234.56789 must be rounded before it can be
handled by the machine. North Star BASIC will round
this to 1234.5679. Notice that the least-important,
rightmost digit is rounded. This is BASIC's standard
rounding procedure, and insures that the rounded
number remains as close to the original value as
possible.

Business users shOUld note that the largest dollars
and-cents figure which may be exactly represented by
8 digits (without rounding cents to dimes or dollars)
is $999,999.99 For applications where dollars-and
cents amounts larger than this must be handled. you
should obtain a special version of BASIC (with
greater precision).

EXAMPLE: A VERY LARGE NUMBER. The number 987654321
will be rounded to 987654320, and, henceforth will
normally be PRINTed in scientific notation by BASIC
as 9.8765432E+08. As you can see, the "eight-digit
rule" is followed in this conversion. even though
scientific notation is invoked in order to correctly
represent the number. The last (9th) digit is
"dropped", but scientific notation representation
insures that a 0 will be "remembered" for the ninth
digit in order to maintain proper place values for
the remaining digits. Notice that, because of this
effect, BASIC considers 987654320, 987654321, and
987654322 to be equal to one-another because they
differ only in their (ignored) ninth digits.

EXAMPLE: A VERY SMALL NUMBER The number .00000000123
will not be rounded by North Star BASIC, but
.00000000123456789 will be rounded. To see why,
think of the two numbers as expressed in scientific

,
,

.

- NORTH STAR BASIC - 0-2



I
I,
I,,,
I

[

f

,

!
I
I
l

USING NUMBERS (Continued)

notation. The first becomes 1.23E-~9. The mantissa
(which is the only component of an E-format number
that is affected by precision) is only 3 digits long
-- well within the 8 allowed. The second number
converts to 1.23456789E-e9. with a 9-digit mantissa
which is too many digits. The number will be rounded
to 1.2345679E-09. (Note that scientific notation is
a more compact way to write these very small
numbers.) Finally, if you added 1 to either number,
it would be rounded to become exactly 1. Check the
E-format versions for the clear reason. This time,
you'll come up with 1.00000000123E+00 and
1.0000000012345679E+00. Both mantissas exceed 8
digits in length. Rounding them to 8 digits leaves
only the number I for each.

RANGE

A number may be positive. negative. or zero.
Positive and negative numbers in standard (a-digit)
precision North Star BASIC can range in magnitude
from lE-64 to 9.9999999E+62.

If you type a numeric constant into BASIC which is
too large for BASIC to handle, a SYNTAX ERROR will
occur. If a number which is too small is typed in,
it will be rounded down to zero.

VARIABLES

In BASIC, as in most other programming languages, a
NUMERIC VARIABLE is considered to be a place (in
computer memory) where a numeric VALUE may be held.
It is, in effect, a "storage place" which may be
occupied by anyone numeric value at any time. If a
new number is put in a variable, that number totally
replaces the previous value which the variable held.

All numeric variables are given initial values of
zero until given different values in explicit LET
statements.

Variables are given NAMES, and a variable name is
used to refer to the variable and/or its contents
when writing programs.

Numeric variable names in North Star
a single capital letter, or a single
followed by a single digit from ~ to
some legal North Star BASIC variable

- NORTH STAR BASIC -

I
I
t,
I,
t
t

I
f,

A B7 C3 z Q N8

BASIC consist of
capital letter
9. Here are
names:

D-3



USING NUMBERS (Continued)

Because these variables may contain only one value,
they are called "simple" variables.

OPERATORS

operators are used in BASIC as they are in regular
arithmetic -- to combine two numeric values
(operands) or to modify one operand in certain pre
defined ways. Three classes of operators,
arithmetic, relational. and boolean are used with
numbers. Each class will be examined separately:

ARITHMETIC OPERATORS

These operators correspond to those used in common
mathematic expressions:

,

*
/

+

FUNCTION EXAMPLE

exponentiation 9T2=81

mUltiplication 5*1.5=7.5

division 3/2=1.5

subtraction 3.2-2=1. 2

addition 7.9+2.1=10

negation -3, -27

RELATIONAL OPERATORS

The relational operators are used to compare pairs of
numeric values. The numeric result of a relational
comparison is either 1 (which stands for "true") or 0
("false"). Usually, relational comparisons are
employed as conditions for IF •.. THEN statements (See
STATEMENT: IF). For example, at a certain point in a
program, it might be desired to assign the value of
10 to the variable T if the value of X is greater
than 10. The comparison (X>l0) would be used as

IF X>10 THEN T=10

The IF statement will assign 10 to T based on the
truth or falsehood of the relational comparison at
the time the statement is executed. The following
chart presents the relational operators available in
North Star BASIC:

- NORTH STAR BASIC - 0-4



USING NUMBERS (Continued)

OPERATOR

>

<

RELATION

greater than

less than

EXAMPLES

(6)1) =1 (true)
(2)3)=0 (false)

(0<0) =0 (false)
(1<3) =1 (true)

<=

>=

=

<>

less than or equal to

greater than or equal to

equal to

not equal to

(5<=5)=1
(3<=5)=1
(6<=5)=0

(8)=7) =1
(7)=7)=1
(6)=7)=0

(9=9)=1
(9=7)=0

(4<>5) =1
(2<>2) =0

BOOLEAN OPERATORS

The boolean operators (AND. OR and NOT) may be used
to combine or otherwise modify relational
(true/false) expressions so as to provide for complex
logical evaluation. Furthermore, any numeric values
may be the objects of a boolean operation: all non
zero values will be treated as "true" (I), while e
will be treated as llfalse". The result of a boolean
operation is either "true" (1) or "false" (~). The
table below summarizes the effects of the boolean
operators. <AI> and <A2> stand for operands.

OPERATOR EXPLANATION EXAMPLES

<AI> AND <A2> If both <AI>
and <A2> are

true (non-zero),
the AND operation

is "true" (1), else
it is .lfaIse" (9).

<AI> OR <A2> If at least one
argument is true.
then the OR oper
ation is true.

If both are false,
the OR is false.

- NORTH STAR BASIC -

(3)5 AND 2(3)=0
(3)2 AND 0<=0)=1
(2=3 AND 0>-1)=0

(3)5 OR 2(3) =1
(3)2 OR 0<=0)=1
(2=3 OR 0<-1)=0

D-5



USING NUMBERS (Continued)

NOT <AI> Negates the boolean
value of the argument.

If <AI> is non
zero (true). the
NOT operation is
false. If <Al>=0

then NOT <AI> is true.

EXPRESSIONS

No'r 7=0
NOT 0=1

NOT (3)5)=1
NOT (3<5)=0

Any valid combination of numeric constants, numeric
variable names, operators, function calls, and array
element names is a NUMERIC EXPRESSION. (See
DISCUSSION: FUNCTIONS and DISCUSSION: USING ARRAYS
for complete details concerning "function calls" and
"array-element names". These are two advanced
features of North Star BASIC which are not covered in
this introductory section.) A single constant, 3.14,
or variable name, A, is an expression all by itself.
In contrast, long constructs such as

(NOT(3+(SQRT(X*Y)/M3-47)/8)T3

are also numeric expressions.

EXAMPLES OF LEGAL NUMERIC EXPRESSIONS

3.14
43+A
«x+2)T(Q-R))*SQRT(Z)

EXAMPLES OF ILLEGAL NUMERIC EXPRESSIONS

438,000.33 (REASON: CONSTANTS CANNOT CONTAIN COMMAS)
7**Y (REASON: TWO OPERATORS IN A ROW ARE NOT ALLOWED)
«3*ABS(A))+4 (REASON: IMPROPER PARENTHESES NESTING)

ORDER OF EVALUATION OF OPERATORS

Is 7+3*2 equal to 20 or 13? This depends on whether
the addition or mUltiplication is performed first.
For purposes of determining the order of evaluation
of operators, each operator is said to have a certain
PRECEDENCE. The rule for the order of evaluation is
as follows: Higher precedence operators are
evaluated first, and operators of equal precedence
are evaluated left-to-right. OPERATORS ENCLOSED IN
PARENTHESES ARE EVALUATED BEFORE OPERATORS NOT
ENCLOSED IN PARENTHESES. When there are parentheses
within other parentheses, operators within the
innermost parentheses are evaluated first. The
operators are listed below in order of decreasing

- NORTH STAR BASIC - D-6



·•

,

,
:

·

USING NUMBERS (Continued)

precedence -- that is, operators which are higher in
the list have higher precedence than those toward the
bottom of the list. Operators on the same line have
equal precedence.

NOT, unary minus (-, negates a number)
T (exponentiation)
*./ (multiplication and division)
+.- (addition and subtraction)
=,(,).<>,<=,>= (relationals)
AND
OR

Thus. 7+3*2 is equal to 13, but (7+3)*2 is 2~. Also.
3*8/2 is 12, -5+4 is -1 (the "-" is a unary minus
here), and (1=2 OR 3=1) is 0.

,

··•

- NORTH STAR BASIC - D-7



USING ARRAYS

DISCUSSION: USING ARRAYS

INDEXING AND SUBSCRIPTING

An ARRAY is an ordered collection of numeric
variables. The entire array, as a whole, has a
single variable name, and all the variables (called
ELEMENTS) in the array share that name, much as the
members of a typical family share the same surname.
An individual element in an array is identified by
its unique INDEX NUMBER, which denotes its position
in the ordering of the array elements. For the
convenience of both those who prefer counting from
zero and those who prefer counting from one, an extra
element, the "zero element~, is included in each
array. For example, a "Se-element array", having a
maximum index number of 50, actually has 51 elements,
indexed 0, 1, 2, •.. , 49, 50.

To represent a given array element in a numeric
expression, you must follow the name of the array
with a subscript -- the index number of the desired
element enclosed in parentheses. For example, the
zero-element of array A would be written as A(0), the
eighth element as A(B), etc.

The index in a subscript may take the form of any
numeric expression -- it need not merely be a
constant. Therefore, if the simple variable I
contains the value of 4, then A(I) will represent the
same element as A(4). Care should be taken, however,
to make sure that any expression used as an array
index will not evaluate to a negative number or a
number greater than the maximum index of the given
array. If either of these things happens, an OUT OF
BOUNDS ERROR will occur. If the index evaulates to a
non-integer, BASIC will TRUNCATE the value to an
integer. (Truncation involves throwing away the
fractional part of a number and keeping only the
whole part. The number 3.6 would be truncated to the
whole number 3. Note that this is not the same as
round ing.)

Note that the simple variable A and an array A may
co-exist in the same program without in any way
affecting each other. Arrays and simple variables
with the same names are separate, distinct entities.
BASIC does not confuse the two, since a simple
variable name will never be followed by a subscript,
while the name of an array must ALWAYS be followed by
one.

- NORTH STAR BASIC - E-l



I

USING ARRAYS (Continued)

MULTIPLE-DIMENSION ARRAYS

Arrays which require only one index may be thought of
as single "rows" of variables. BASIC also permits
the definition of arrays which use more than one
index in their SUbscripts. The addition of each new
index to an array is said to add another "dimension"
to the array, and an array with n indices is called
an "n-dimensional" array. When using more than one
index to reference a single element, the indices must
be separated by commas. Remember that each index is
allowed to be a numeric expression.

To access the third element in the fifth row of a
two-dimensional array M, for example, you write
M(S,3). Assuming M has a maximum row number of X and
a greatest column index of Y, the following
statements will list the contents of each element in
the array in an appropriate tabular format:

10 FOR 1=0 TO X
20 FOR J=0 TO Y
25 REM Print next element wino <CR>
30 PRINT TAB(I*15),M(I,J),
35 REM Each column of numbers
36 REM is 15 spaces wide.
40 NEXT
45 REM Print <CR> before starting next row.
50 PRINT
60 NEXT

Space for arrays is
the DIM statement.
many dimensions an
maximum index will

reserved by the programmer using
A DIM statement specifies how

array will have, and what the
be in each dimension.

The above defines an array X consisting of elements
indexed from e to Ieee (1001 elements altogether), a
two-dimensional array Y with maximum row index of 2
and maximum column index of 3, and a three
dimensional array Z with dimensions of 10, 10, and
Ie. In keeping with the "zero-element" convenience
feature mentioned above, each array dimesnion
includes a zero-element, so that array Z above
actually contains 11 elements, instead of 10, in each
dimension, indexed from 0 to 10.

When more than one dimension is specified, the
maximum indices must be separated by commas. Commas
must also separate array declarations when more than

- NORTH STAR BASIC - E-2



USING ARRAYS (Continued)

one occurs in a single DIM statement.

The maximum index for any dimension in an array
declaration may also be given in the form of a
numeric expression. If the variable Q contains the
value 10, then the following DIM statement will
result in the creation of the same arrays as the
previously given one:

I~ DIM X(Q*Q*Q). Y(Q/5,3), Z(Q.I~.SQRT(Q*Q))

An array may have any number of dimensions, but
arrays with many dimensions tend to take up huge
amounts of memory space. Consider that an array F,
declared as F(10,10,10,10), will result in the
reservation of 14,641 variable spaces in memory!
(This corresponds to 11*11*11*11, not 10*10*10*10
-- remember the 0-element in each dimension!) Each
element of the array takes up several bytes, and
chances are this particular array would be too large
to fit in the memory of your computer.

Whenever there is not enough memory available in the
program/data area to hold an array, a MEMORY FULL
ERROR occurs.

DEFAULT DIMENSIONS

All arrays of more than One dimension and most one
dimension arrays must be declared in DIM statements
before being used. However, it is not necessary to
declare a one-dimensional array of maximum index l~

or less. Any array which is used without first being
declared in a DIM statement is automatically created
by BASIC to be one-dimensional, and of maximum index
10. If you desire a specific maximum index greater
or smaller than 10, however, you must use a DIM
statement to create the array. An attempt to
reference an element in a multi-dimensional array
before th~ array has been dimensioned in a DIM
statement will fail, causing an OUT OF BOUNDS ERROR.
When dimensioned, an array is automaticaly
initialized so that all of its elements contain the
value 0.

ARRAYS MAY NOT BE RE-DIMENSIONED

No matter how created, either by an explicit
declaration in a DIM statement or automatically, by
BASIC, no array may be re-dimensioned in another DIM
statement later during program execution.
Specifically, this means that the size of arrays may

- NORTB STAR BASIC - E-3



USING ARRAYS (Continued)

not grow or shrink during the RUN of a program. Any
attempt to "re-dimension" an existing array will
result in a DIMENSION ERROR.

ARRAY REFERENCES IN NUMERIC EXPRESSIONS

As mentioned in the chapter on USING NUMBERS, array
elements may be used in numeric expression, since
they are perfectly legal variable names. Here are
some examples of array elements used in expressions:

IB X=SQRT(Q(3,S)+ABS(B))
6B PRINT M(F(A,B) ,L(A,B))
9B N(A)= N(A+l)/2

SEE ALSO: DISCUSSION: USING NUMBERS
STATEMENT: DIM

- NORTH STAR BASIC - E-4



USING STRINGS

DISCUSSION: USING STRINGS

A STRING is
characters.

a sequence of letters and/or other
For example, the following are strings:

HELLO NG,34* ABC123
THE DATE IS 7/7/78

STRING CONSTANTS

Strings enclosed in quotation marks are called STRING
CONSTANTS. Note that the quotation marks themselves
are not part of the string, but serve only to mark
its boundaries for convenient recognition by both
human beings and machines. The following are
examples of BASIC string constants:

"HELLO ll

"'rHE DATE

THE NULL STRING

"NG; 34*"
IS 7/7/78"

"ABC123"

The string represented by two consecutive quotes ("")
contains no characters. and is called the NULL
STRING.

STRING VARIABLES

Just as numbers may be held in numeric variables, so
can strings be held in STRING VARIABLES. String
variables are named similarly to numeric variables,
and differ only in that a dollar-sign ($) is added to
the name to denote the type of the variable as
string. Thus. a legal string variable name consists
of a single capital letter (A-Z) followed by a
dollar-sign, or a capital letter and a single digit
(0-9). followed by a dollar sign.

Examples of legal string variable names:

A$ Q7$ Z3$ R$

DIMENSIONING STRING VARIABLES

Before they can be used to hold string values in a
program, string variables must be DIMENSIONED.
DIMensioning a string causes BASIC to reserve memory
space to hold the value of a string. To dimension a
string, the string name must be included in a DIM
statement, along with its MAXIMUM LENGTH in
characters, before it is used to store a string value
in a program. (For the proper method of doing this,

- NORTH STAR BASIC - F-l



,

USING STRINGS (Continued)

see STATEMENT: DIM.) If you use a string variable
without having first declared it in a DIM statement,
BASIC will automatically dimension it to a maximum
length of Ie characters. Once created, strings may
not be re-dimensioned in a program.

A string variable may contain any string whose length
is less than or equal to the dimension of the string.
The CURRENT LENGTH of the variable is the length. in
characters, of the value it contains. Thus, if A$ is
dimensioned to a maximum length of 26 characters, it
may hold the entire alphabet (current length = 26
characters), the string "CA'f" (current length = 3),
or even the null string (current length = 0).

Immediately after being dimensioned, a string is
initialized to contain all blanks. Thus, if AS is
dimensioned to be 26 characters long, it initially
contains a string of 26 blanks.

SUBSTRINGS

The programmer can access parts of a string
-- smaller segments consisting of one or more
consecutive characters from within the string. Such
a segment is called a SUBSTRING.

Substrings of string variables are represented by
SUBSTRING NOTATION -- adding a SUBSTRING INTERVAL, in
parentheses, to the variable name. For example,
assume that A$ holds the string value "ABCOE u •

(Unless otherwise stated, this will be the permanent
value of A$ throughout the discussion.) To represent
its SUbstring "CD". you would write A$(3.4), which
specifies a substring consisting of the 3rd through
the 4th characters of A$. A$(3,3) would yield the
value of "C", and A$(2,5) would represent "BCDE".

Either or both of the numeric values ina substring
interval may be represented by any numeric
expression, as long as each expression evaluates to a
value greater than or equal to I and less than or
equal to the current number of characters in the
string. Whenever any of the numeric values in a
substring interval are non-integer, BASIC ignores the
fractional parts. Thus. 5.6 is taken as 5, and 1.23
is taken as 1. If A=3 and B=4 then A$(A,B) would be
the same as A$ (3,4), or "CD". If B is more than 5,
or A is less than 1, A$(A.B) would not be allowed,
causing an OUT OF BOUNDS ERROR. This error will also
occur if the value of the first expression is greater
than the value of the second. Therefore, a backwards

- NORTH STAR BASIC - F-2



USING STRINGS (Continued)

substring such as A$(4.2) is illegal.

THE OPEN-ENDED SUBSTRING

A special form of substring notation is used to
reference a substring consisting of all the
characters from a given starting position in the
string through its end. OPEN-ENDED SUBSTRING
NOTATION uses only one numeric expression, which
specifies the starting position within the string.
and which must be greater than or equal to 1 and less
than or equal to the length of the original string.
For example, A$ (3) stands for "CDE". Note that the
value of A$ as a whole is the same as the value of
the open-ended substring A$(l). A$(5) and A$(5.5)
are the same as well, since the 5th character is the
last character in A$. Use of open-ended substring
notation eliminates the need. in certain situations.
to know the current length of the original string.

STRING OPERATIONS: CONCATENATION

One operation may be performed on strings:
CONCATENATION. symbolized by the "plus" operator (+).
This is not to be confused with numeric addition.
Instead, concatenation is the joining of two strings,
front to oack, rather like coupling railroad cars
together. For example, "CAR"+" LOAD" represents the
same value as "CARLOAD". Any string value may be
concatenated with any other string value to yield a
third value which consists of the two linked
together. A$(2.3)+A$(2) yields the value "BCBCDE".
(Remember that A$ has held "ABCDE II throughout this
discussion.) Concatenation operations can be
"chained", such as in

A$(1,1)+A$(3.3)+A$(3.3)+A$(5)+A$(4)+" MEANS YIELD"

which gives the value "ACCEDE MEANS YIELD".

STRING FUNCTIONS

BASIC includes certain built-in FUNCTIONS which
return useful string values. It is also possible to
define single-line and multiple-line user-functions
which return string values. See DISCUSSION:
FUNCTIONS for more detailed information.

STRING EXPRESSIONS

A STRING EXPRESSION is a string variable, substring,
string function, or a quoted string literal. The

- NORTH STAR BASIC - F-3



"I

USING STRINGS (Continued)

concatenation of two string values is also a string
expression. Long, involved compound expressions may
be formed by combining one or more of the elements
mentioned above. For example:

A$
F$+",2"
A$ (l.X)+CHR$ (97) +A$+"GO FOR BROKE"+FNS$ (25)

The built-in string functions (e.g. CHR$) and the
user-defined string functions (e.g. FNS$) will be
discussed later.

STRING COMPARISONS

string values may be compared using the comparison
operators = , > , < , (= ~ )= , and (>. BASIC
compares string values using the following rules:

1) Two string values are equal only if they have the
same number of characters, and have matching
characters in each character position.

2) Strings are compared character by character, left
to right, until a difference occurs or one of the
strings ends.

3) If a difference exists, and the ASCII value of the
first different character in the first string is
less than that of the corresponding character in
the second string, then the first string is "less
than" the second string. If the character in the
first string is greater than its counterpart in
the second string, then the first string is
"greater than" the second.

4) If one of the strings ends before a difference is
found, the shorter string is considered to be
"less than" the larger one.

5) As a consequence of rule *4, the null string is
always less than a non-null string.

When using strings composed solely of alphabetic
characters of the same case (either upper or lower,
but not both), this scheme corresponds to comparsion
by "dictionary order", where an "entry" is considered
to be "less than" another if it comes before the
other in the dictionary, and "greater" than the other
if it comes after. Thus "bird" is less than (comes
before) "tree", and "zero" is greater than (comes
after) "aardvark". The difference between string

- NORTH STAR BASIC - F-4



USING STRINGS (Continued)

comparisons in BASIC and regular word-comparsion by
alphabetic order lies solely in the fact that the
ASCII character set, used to define "alphabetic"
order in BASIC, has 128 "letters" as opposed to our
usual 26. To give you a better idea of this expanded
"alphabetic order", here are some samples of string
comparisons. Use the five rules above and the table
of ASCII codes in APPENDIX 4: DECIMAL-HEX-BINARY
ASCII CONVERSION TABLE to check the following
examples:

"z" > "COCOA" "120" < "75"
"123" < "124" "AB " > lIAB"

"123" < tlABC" "ABl" > "ABell"
"ABC" < "abel! " " > " !",
"ABC" > "AS"

NOTE: The logical operators AND, OR and NOT may not
be used to combine the effects of two or more string
comparisons in an IF statement. These three
operators may be used in numeric comparisons only.

ASSIGNMENT TO STRINGS AND SUBSTRINGS

Any legal string expression may be assigned to a
string variable or any part of a variable (by the use
of substring notation), as in the following examples:

A$="CAT"
Q7$ (1,3) ="DOG"

(In the second example, note that the first three
characters of Q7$ will become '·DOG". Any characters
in Q7$ past the third will not be changed.)

If a string value is assigned to a string variable
which has been dimensioned to be too small to hold
the entire value, its rightmost characters are
discarded until the resulting truncated value will
fit in the variable. Similarly, if an assigned value
is too big to fit in a substring interval, it is
truncated to the proper length. As an illustration,
try RUNning the following program:

Ie REM Demonstration of automatic
20 REM string truncation in assignment.
100 DIM L$ (13)
110 L$=" ABCDEFGHIJKLMNOPQRSTUVWXYZ"
120 PRINT L$
130 L$(2,3)="1234S"
140 PRINT L$

- NORTH STAR BASIC - F-S



•i '-.../.,

,,·•

,.,

,.

,,,

USING STRINGS (Continued)

The output of the program looks like this:

ABCDEFGHIJKLM
A12DEFGHIJKLM

The value shown on the first line of output is a
result of the assignment statement in program line
110. Although the attempt was made to assign the
entire alphabet to L$, only the first 13 characters
fit. due to the dimension declared for L$ in line
100. The rest of the alphabet was discarded.

The second output line shows the value produced by
the assignment in line 130. The assignment asks that
a five character string value be squeezed into a two
character interval, which is not possible. As a
result. BASIC assigned only the first two characters
of "12345", or "12" to the substring, ignoring the
rest.

When assigning to a SUbstring interval. if the value
assigned is smaller in length than the substring
interval, any remaining characters in that interval
are not modified. as in the following example
program:

10 REM More substring assignment.
20 DIM L$ (13)
30 L$="ABCDEFGHIJKLM"
40 PRINT L$
50 L$(5,9)="12345"
60 PRINT L$
70 L$(5,9)="abc"
80 PRINT L$

Here are the three output lines produced by the
program:

ABCDEFGHIJKLM
ABCD12345JKLM
ABCDabc45JKLM

In the assignment of line 50, "12345" exactly fit the
substring L$(5,9). However, in line 70, "abc" was
two characters short, so only the first three
characters of the substring. characters 5 through 7.
were modified.

It is also possible to use the open-ended SUbstring
form to specify a substring interval into which a
value is to be assigned. For example, L$(5) is taken
to specify the same interval as L$(5,LEN(L$)).

- NORTH STAR BASIC - F-6



USING STRINGS (Continued)

(LEN(L$) stands for the current length of L$.) In
the substring assignment example above, exactly the
same results would have been obtained if the
sUbstring interval expressions in the string
assignment statements had been replaced by open-ended
SUbstring expressions.

Assignment of the null string to any substring
specified by regular or open-ended SUbstring notation
causes no change in the string.

MAXIMUM LENGTH VS. CURRENT LENGTH

The maximum length of a string variable is the
maximum number of characters which it can hold. M$,
dimensioned to 50, can hold up to 50 characters at
once, but no more. On the other hand, a string's
CURRENT length (as determined by the LEN function) is
the number of characters which the variable actually
does contain at anyone time. Thus, if M$ contains
"CAT", its current length is 3. despite the fact that
its maximum length is 5~. As long as M$="CAT". BASIC
statements and string expressions may not access any
character positions in M$ beyond the third. While
M$="CAT", the character positions beyond the third
simply do not exist, and a reference such as M$(3.5)
is illegal. But, if M$ is changed to "STICK", then
its current length becomes 5, and M$(3,5) is allowed.
However, it is always incorrect to reference a
character position beyond the maximum length of the
string. In this example of M$, the substring
reference M$(4~,6~) will always be illegal, since M$
can never grow larger than 50 characters in length,
and therefore, the character positions from 51 to 60
will never exist.

CHARACTER SET IN BASIC

Up to now, "character" has been used in its intuitive
sense, as a digit, letter or punctuation character
which may be typed in by a user or printed on a
terminal. In fact, the BASIC character set includes
"invisible" control characters and the many
"undefined characters" which may be represented as
byte (8-bit) values. Altogether, BASIC's character
set includes 256 values. The first 128 of them (0 to
127) correspond to the 128 characters of the
international ASCII standard. The remaining 128
characters (128 to 255) are generally undefined on
most terminals, but are available to the North Star
BASIC programmer as a convenience. The built-in
string function CRR$ may be used to represent any

- NORTH STAR BASIC - F-7



~,
·•r·,
~

•
••,
~

~

··,

",.
I;
i;

; SEE ALSO:

USING STRINGS (Continued)

character which cannot be typed or printed. Note
that CHR$(34) may be used to represent a quote-mark.

10 A$="HI THERE"
20 PRINT A$
30 A$=CHR$(34)+A$+CHR$(34)
40 REM Above puts quote-marks in A$
50 PRINT A$

When RUN, the above program produces these results:

HI THERE
"HI 'fHERE lI

DISCUSSION: FUNCTIONS
OISCUSSION: USING NUMBERS (EXPRESSIONS)
S1'ATEMENT: DIM
APPENDIX 4: DEClMAL-HEX-BINARY-ASCII CONVERSION TABLE

- NORTH STAR BASIC - F-B



THREE IMPORTANT STATEMENTS

STATEMENT: DIM <list of array or string size declarations>

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

Reserves program/data area memory space for strings
and arrays as specified in the declarations.

10 DIM A$(30) ,0(100) ,Z(5,2)
60 DIM X7{X,Y), X8(X,X,X)
70 DIM C$ (100*3)

A DIM statement automatically initializes the
variables declared in it. After a DIM statement is
executed, the length of any string declared in it is
equal to the declared size and all character
positions are filled with spaces. (For example,
after executing line l~ above, A$ will be a 30
character string filled with s~aces.) All elements
of any array declared in a DIM statement will be
initialized to zero.

When declaring strings, the single numeric expression
enclosed in parentheses specifies the maximum number
of characters which the string variable may hold. A
declaration for a single array may contain several
numeric expressions within the parentheses, each
denoting the maximum index value in each "dimension"
of the array. Thus, after execution of the DIM
statements in lines 10 and 60 above, Q will be a one
dimensional array with a maximum index of 100, z will
be a two-dimensional array with 5 rowS and 2 columns,
and XB will be a three-dimensional array with a
maximum index of X in any of its three dimensions.

If a string or array is referenced in any statement
without having been declared in a prior DIM
statement, it is automatically created, initialized,
and dimensioned by BASIC, strings to a maximum length
of 10, and arrays to one dimension and maximum index
of 10.

Whether "dimensioned" explicitly through a DIM
statement or implicitly through first reference to a
previously non-existent variable, a string or array
may not be lire-dimensioned" (declared in a DIM
statement executed later in time during the same RUN
of a program). Any attempt to do so will lead to a
DIMENSION ERROR. (For the same reason, a DIM
statement itself may not be repeated during the
execution of a program.)

MEMORY FULL ERROR
Not enough program/data area memory is available to

- NORTH STAR BASIC - G-1



,

,.,,
,.,

.~.

SEE ALSO:

THREE IMPORTANT STATEMENTS (Continued)

hold one or more of the variables declared in the DIM
statement responsible for the error. See APPENDIX 3:
IMPLEMENTATION NOTES for details of memory
allocation.

DIMENSION ERROR
An attempt was made to re-dimension a string or an
array which already exists.

DISCUSSION: USING STRINGS
DISUCSSION: USING ARRAYS

;

- NORTH STAR BASIC - G-2



THREE IMPORTANT STATEMENTS (Continued)

STATEMENT: REM <optional line of any text>

ACTION: None. REM statements are ignored by BASIC.

EXAMPLES: 10 REM THE REM STATEMENT IS USED TO
20 REM INSERT COMMENTS IN A PROGRAM.
30 REM FOR EXAMPLE
35 REM
40 N=G-W \ REM NET GETS GROSS LESS WITHHOLDING
45 REM
7~ REM Lower case letters are ok in REMs.

REMARKS: As can be seen from example line 40, a REM may be
included on the same line as other BASIC statements,
however, it must always be the last statement on a
line. The reason for this is, all text after the REM
reserved word on a line is treated as a comment and
is ignored by BASIC. Therefore, any statements which
appear after a REM on the same line will not be
executed.

As with other North Star BASIC statements, the
characters ":", ";", "[", and "]" are translated to
"\", ",", "(", and ")", respectively, within REM
text.

ERROR
MESSAGES: None.

- NORTH STAR BASIC - G-3



•,
••,,
•

THREE IMPORTANT STATEMENTS (Continued)

STATEMENT: LET <numeric variable> = <numeric expression>
"'"-' LET <string/substring variable> = <s'tring expression>

<numeric variable> = <numeric expression>
<string/substring variable> = <string expression>

,
,

•,

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

The value of the expression on the right hand side of
the equal-sign is assigned to the variable named on
the left side. The reserved-word LET is optional,
and may be omitted.

IB X=X+l
5B LET A(X)=6
35 LET Q=SQRT(X)+Y
2B B$="HELLO THERE"
61 M$(2,1l)=FNN$("415-549-BB5B")
15B LET Z$=STR$(Q)+Z$(1,2)+"BOX"

BASIC permits only one assignment per LET statement.
However, several assignments may be made on one line,
as in:

IB A=B \ B=B \ C=B

Note, in line l~ above, the apparent mathematical
impossibility of X=X+l. However, as an assignment,
this makes sense -- the right-hand expression is
evaluated with the current value of X, and the result
obtained then becomes X's new current value. X=X+N
has the effect of increasing the value of X by N.
(It is sometimes easier to understand assignment if
one resists reading LET statements as lIQ equals Q+l" I

for example I and says instead, "Q gets Q+l", or "z
becomes M+l73 11

.)

Only single variable names are legal on the left side
of an assignment (LET) statement. Also, it is
impossible to assign entire arrays with a single LET
statement. Each individual element of an array must
be assigned separately.

TYPE ERROR
The type of the expression on the right side is not
the same as the type of the variable on the left
side. It is illegal to assign a string value to a
numeric variable, or a numeric value to a string
variable.,

•
!••,
, ',--",
,
•·,,,
;
•,

SEE ALSO: DISCUSSION: USING NUMBERS
DISCUSSION: USING STRINGS
DISCUSSION: USING ARRAYS

- NORTH STAR BASIC - G-4



INPUT AND OU1'PUT

STATEMENT: PRINT
PRINT <list of string and/or numeric expressions>
PRINT "<device expression>
PRINT #<dev. exp.), <string/numeric expr. list>

ACTION:

EXAMPLES:

The data indicated in the OUTPUT DATA LIST is
printed on the specified output device. After the
entire list is printed, the print-head or cursor of
the terminal is moved to the start of the next line.
If there is no output list, only a blank line is
printed. If no device is specified, output is
printed on device *~, the console terminal. The
device expression consists of a numeric expression
which evaluates to an integer from ~ to 7,
corresponding to a connected output device. A ~iece
of "data information" in the output list consists of
any string or numeric expression. PRINT formatting
expressions may also be included in the output list.
See DISCUSSION: FORMA'rTED PRINTING for complete
details. Elements in the output data list must be
separated by commas. Elements in the same list will
be printed on the same output line. Information
which cannot fit on one output line will be continued
on the next.

If a comma follows the output list, the print-head or
cursor will not be moved to the next line, so
subsequent output will appear on the same line.

PRINT
PRINT "THE ANSWER IS: "
PRINT A,B,C.A?
PRINT #D
PRINT #O,A,B,"HELLO",C(3) ,0$

Here is a sample program, designed to demonstrate the
action of the PRINT statement as described above.
Try it:

10 A=3
20 B=4
30 PRINT "A EQUALS" .A,
40 PRINT " B EQUALS",B
50 END

When this program is RUN, the following should appear
on your terminal: .,
A EQUALS 3 B EQUALS 4

:

REMARKS: The exclamation point (1) may be used as an
abbreviation for the keyword PRINT. Thus, the

- NORTH STAR BASIC - H-I



,,

,
··,

,

,

;

•,

·,
"~

SEE ALSO:

INPUT AND OUTPUT (Continued)

statement

PRINT "STRING"

is the same as

!" 51'RING"

This is especially convenient when using the PRINT
statement in direct mode.

Note that the comma (as separator in the PRINT output
list) performs the same function as the semi-colon in
many other versions of BASIC. To obtain output
"tabbing", use the TAB function, as described in
DISCUSSION: FUNCTIONS (built-in, TAB).

DISCUSSION: FORMATTED PRINTING
DISCUSSION: MULTIPLE I/O DEVICES
STATEMENT: LINE

- NORTH STAR BASIC - H-2



INPUT AND OUTPUT (Continued)

DISCUSSION: FORMATTED PRINTING

NOTE: Read DISCUSSION: USING NUMBERS and STATEMENT:
PRINT before beginning this section!

REGULAR AND E-FORMAT NUMBER PRINTING

Normally, BASIC will "choose" between "regular" form
and exponential/scientific form for the most
appropriate method to PRINT a numeric value. BASIC
chooses the methods which will result in the most
concise printed figure. Note that a space before
each "regular" number is automatically printed.

3.1415
.7319
-8.03
-.04

When a numeric value is too large or too small to
PRINT in regular form, BASIC will automatically use
E-FORMAT. E-forrnat consists of a space, a minus sign
if the number is negative, the first digit of the
mantissa, a decimal point (if there are any digits
left in the mantissa), any other mantissa digits, an
"E" (to denote the beginning of the exponent) ~ a plus
or minus sign to denote the sign of the exponent, and
the two digits of the exponent itself ( the first
digit may be 0). Here are some numbers in E-format:

1.4073749E+l4
-2E-B9
-5.4128376E+l3

When BASIC chooses the format of printed values, the
PRIN'I' statement is in "FREE FORMAT" -- i.e., BASIC is
free to PRINT the values using the most concise
format. Sometimes, however you may want certain
values to be printed only in E-format, or only with
two decimal places, or only as integers (with no
decimal points). In other words, you may want to
determine the format under which these numbers will
be printed, as opposed to letting the computer
choose. To do this, BASIC permits you to include
numeric "format specifications" within the output
lists of PRINT statements. These format
specifications always begin with a per-cent sign (%).

WHAT IS A FORMATTED NUMBER?

A programmer-formatted (as opposed to a free
formatted) number always takes up exactly a given

- NORTH STAR BASIC - H-3



•

·•
INPUT AND OUTPUT (Continued)

number of spaces on the printed line. This is called
the FIELD WIDTH. The field width is defined by the
programmer in the format specification, and must
reserve enough character positions in the printed
line to hold all the characters in the number as
printed. A field width of 6, for example, is too
small to accommodate the number 1234.56, because 7
character positions are actually required -- six for
the digits. and one for the decimal ?oint! Also
remember to leave room for plus or minus signs if
they might occur in the number. as well as the letter
"E", if E-format is being used to display a number in
scientific notation. If the specified field isn't
wide enough to PRINT a given number, then a FOR~~T
ERROR will occur when an attempt is made to PRINT the
number using that format.

The next few examples will make use of "I-FORHAT" to
illustrate some general points about BASIC's
formatting mechanism. Only numners with integer
values may be printed using I-format. The I-format
specification consists of the per-cent sign (%), a
number, and the capital letter "I", as in the
following:

%31

The number given specifies the number of column
positions on the printed line which will be reserved
to hold the number. The %31 format specification,
for example. requires that any number printed
according to it must be an integer. and must fit in
three character positions. Therefore. 0, positive
numbers from 1 to 999, and negative numbers from -1
to -99 may be printed under this format. Remember
that the negative-sign counts as taking a character
position.

When printing a programmer formatted number, BASIC
does not automatically insert leading spaces to keep
the number from "bumping up against" previously
printed information on the same line. as it does in
free-format. The statement

PRINT "OOPS" ,%31 ,349

results in

OOPS349

;

on the terminal.
output from other

In order to separate your formatted
output, you may elect to PRINT

- NORTH STAR BASIC - H-4



INPUT AND OUTPUT (Continued)

explicit spaces before (and after) the number. USe
the TAB function, or specify a field width large
enough to provide at least one blank space between
the number and previous information on the line.

RIGHT JUSTIFICATION

All prog[a~~e[ formatted numbers are automatically
right justified within their PRINT fields. That is,
the number is printed so that, in a field which is n
character positions wide, the last character in the
printed number occurs in the n-th (rightmost)
character position of the field. and spaces fill to
the left. The following numbers are right justified:

349
1234
7.3

8.42
-2118.37

1.61

Note that, when right justified numbers having the
same number of digits after the decimal point are
printed one above the other, the decimal points will
"line up". (Note that decimal-point numbers cannot
be printed using I-format, but are included in this
example because BASIC's decimal-point format, to be
discussed soon, also right justifies.)

The statement

PRINT "HERE IS A GAP:".%l~I.2

produces the output

HERE IS A GAP: 2

because the field, specified as Ie positions in
width, is more than large enough for the I-digit
number 2.

DECIMAL PLACES

In the case of floating-point and E-format numbers,
you may also decide how many decimal places are to be
displayed when a formatted number is printed. For
example, the floating point format %7F2 will put
numbers from -999.99 to 9999.99 in Hdollars-and
cents" form. with only two digits to the right of the
decimal point:

- NORTH STAR BASIC - H-5



,,
·,•, INPUT AND OUTPUT (Continued)

··•
•
·
··

-302.63
51.00

987.12
1234.56

(The field is 7 positions wide.)

Note that, if the number is an integer. zeroes are
used to fill the decimal positions. Suppression of
those "trailing zeroes" will be discussed later.

,
•

If a number to be printed has more decimal places
than the format specification indicates. the value
printed is the number rounded to the indicated number
of digits.

·,,
,·

Here are the allowable formats:

(in the following, nand m stand for integer
constants)

model name/effect

A format specification which consists only of a
percent-sign specifies a return to free format.

nFro F-format:
Each subsequent numeric value in the PRINT list
will be printed in an n-character field, right
justified, with m digits to the right of the
decimal point.

All numeric values in a PRINT-list are printed using
the new format specification until a subsequent
format specification appears in the list, or until
the end of the data/format list itself. Note that
the printing of numbers in subsequent PRINT

nEm E-format:
Subsequent numeric values in the PRINT list will
be printed in scientific notation in an n
character field, right justified, with m digits
to the right of the mantissa decimal point.

H-6- NORTH STAR BASIC -

oI I-format:
Each subsequent numeric value in the PRINT list
will be printed in an n-character field, right
justified, provided they are integers (have no
fractional part). If a value to be printed
under this format is non-integer, a FORMAT ERROR
will occur.

··
~

··,,
·,
•,

·,···,
;,,

·
,·,·,
•·,
·I

I
, '--"••;·
"•
;
•



INPUT AND OUTPUT (Continued)

statements will not usually be affected by format
specifications in previously-executed PRINTs. In
~articula[, for the two lines:

10 PRINT %3I,A.B.C
20 PRINT D

All values in line 10 will be printed according to
the %31 format, but D (in line 20) will be printed
using free format. The format specification in line
10 can affect only values which line 10 itself
prints.

DEFAULT FORMAT VS. CURRENT FORMAT

BASIC keeps track of two format specifications: the
CURRENT FORMAT and the DEFAULT FORMAT. Each numeric
value in a PRINT output list is printed using the
current format. At the beginning of each PRINT
statement, the value of the current format is made
equivalent to that of the default format.
Thereafter, the current format is changed each time a
format specification occurs in the PRINT output list.
The default format is set initially to free-format.
and may be changed by using the cross-hatch (#)
format character in a format specification as
descr ibed below.

OTHER FORMAT CHARACTERS

Certain other FORMA1.' CHARACTERS may be used to modify
the effects of a format-specification. Several of
these characters may be combined in one format
specification, if you wish. All format CHARACTERS in
a format specification must come after the % and
before the format specification itself. Here are the
characters:

Z Trailing zeroes after the decimal point are
suppressed~ spaces will be printed instead.

The format specification after this character
will become the default format. Also, number
to-string conversion is done using the default
format (see DISCUSSION: FUNCTIONS, built-in,
STR$). Note that %# will force free format to
be the default format. This is useful in cases
where you have made another format the default,
and would like to return to free-format.

C Commas will be placed to the left of the decimal
point as needed to group each sequence of three

- NORTH STAR BASIC - H-7



INPUT AND OUTPUT (Continued)

digits -- e.g. 1,234,567. (Note that the "CO
option is not effective with E-format
specifications.)

$ A dollar sign will be placed to the left of the
value when it is printed.

Caution! When using C or $ with a format
specification, you must be sure that the field width
specifies enough character positions to contain the
longest number you intend to PRINT in that format,
plus any dollar sign, plus any maximum amount of
commas which may be inserted by the machine. For
instance, the statement

PRINT %C9F2, D

will yield the output

$3,478.92

when 0=3478.92, but will result in a FORMAT ERROR if
D=107843. The number should be printed as
$107,843.00, but this requires the field width to be
at least 11.

EXAMPLES:

FORMAT

%8F2
%$6F2
%C91
%C81
%l0E3
%Z10E3
%$CllF2

VALUE

19.355
45.12
1000000
1000000
472
472
201758.88

- NORTH STAR BASIC -

OUTPUT

19.36
$ 45 .12
1, 000,000
FORMAT ERROR
+4.720E+02

+4.72E+02
$201,758.88

H-8



INPUT AND OUTPUT (Continued)

STATEMENT: INPUT <list of variables>
INPUT <string constant>~ <var. list>
INPUT #<device expression>. <var. list>
INPUT #<dev. expr.>~ <string const.>, <var. list>

,,

ACTION:

EXAMPLES:

REMARKS:

User input of string or numeric constant data is
"requested" and accepted from the terminal named by
the device expression. If there is no device
expression. the console. device #~. is assumed. The
device expression must be a numeric expression which
evaluates to an integer from ~ to 7. The data
provided by the user is assigned to the variables
named in the INPUT statement~s variable list. If no
string constant is specified, input is "prompted" by
a question-mark (sent to the terminal before input
data is accepted). If a string constant is given.
however, this string is sent to the terminal as
prompt~ instead. The user strikes the RETURN key
when finished providing data-input.

10 INPUT A,B,Q$
70 INPUT "YOUR NAME: ",N$
35 INPUT 13,X,Y
30 INPUT #X,"COMMAND: ",C$(5,9)
19 INPUT "",X \ REM No prompt is given at all.

INPUT may not be used in direct mode.

INPUT will "wait" forever for user-response, until
the RETURN key is struck.

String constants entered by the user in response to
INPUT should not be quoted. (If quotes are typed,
they will become part of the string.)

If an INPUT statement requires several consecutive
numeric data-items to be given by the user, it is
possible to put them all on one line, as long as they
are separated from one-another by commas. For
example, a proper response to an INPUT statement
which asks for three numbers is:

123, 456, 789 <CR>

However, since carriage-returns must terminate the
INPUT of a string, the "comma-method" is not suitable
for inputting several consecutive strings. To INPUT
more than one string value on one line of the
terminal, successive INPUTl statements must be used.
(See STATEMENT: INPUT1.)

~..

- NORTH STAR BASIC - H-9



r.,
,
•,
-,·;
,
•

,,

,

•

i;
,-,,
"

I ,
•

INPUT AND OUTPUT (Continued)

To illustrate proper user-response to an INPUT
statement, assume that example line 10 is executed.
A question-mark (?) will appear on the terminal.

?

This indicates that the computer is waiting for
INPUT, and the knowledgable user might type in the
following:

2. 3. WEASEL<CR>

«CR>, of course. signifies striking the RETURN key.)
After RETURN is struck, A will be set to 2, B to 3,
and Q$ to the string value "WEASEL".

A single carriage-return (representing no input) is
acceptable when the next item in the variable list is
a string. In this case, the string will be set null.
However, valid numeric input must be supplied for
numeric items in a variable list -- an INPUT ERROR
will occur if this isn't done.

Note that the line editor may be used to modify the
user's input line before <CR> is struck.

When too few data items are typed before RETURN is
struck, BASIC will type a double-question-mark (??)
as auxilliary prompt, and await further INPUT for the
given variable list. It will repeat this step as
long as necessary until all variables named in the
variable list have been assigned values typed in from
the terminal.

Note that the INPUT statements and the built-in INP
function are not the same.

ERROR
MESSAGES: LENGTH ERROR

The line of data-input is too long.

INPUT ERROR -- PLEASE RETYPE
A numeric value was required by the INPUT statement,
but a non-numeric value was supplied by the user.
The user is automatically given a chance to rectify
the mistake by retyping all data elements required by
the INPUT statement.

SEE ALSO: DISCUSSION: USING NUMBERS
DISCUSSION: CONTROL-C, THE PANIC BUTTON
DISCUSSION: FUNCTIONS (built-in, INP)
STATEMENT: INPUTI

- NORTH STAR BASIC - H-le



r
INPUT AND OUTPUT (Continued)

STATEMENT: INPUTl <list of variables>
INPUTl <string constant>, <var. list>
INPUTl 4<device expression), <var. list>
INPUTl #<dev. expr.>. <string canst.>. (var. list>

..~

ACTION: Exactly the same as STATEMENT: INPUT, except that
when the user strikes the RETURN key to terminate an
input line, no carriage-return is ecnoed to the
terminal. Subsequent input or output will occur on
the same line.

EXAfolPLES: 50 INPUTI Z,W,B7,A(3)
25 INPUTI 4D (Q), "GUESS? ",G

REMARKS: See STATEMENT: INPUT

ERROR
MESSAGES: See STATEMENT: INPUT

NORTH STAR BASIC - H-ll



,

·· INPUT AND OUTPUT (Con~nued)

DISCUSSION: MULTIPLE I/O DEVICES

··
·,,
·,

,,
•,
,

A computer system may include several input/output
(1/0) devices, such as a video terminal, printer,
graphics display, etc. North Star BASIC provides a
convenient means for BASIC programs to make use of up
to 8 separate I/O devices. A unique integer number
from 0 to 7 is assigned to each one. Device #0 must
correspond to your main communication link to your
computer -- also known as the console terminal. It
is generally a teletype-style or a CRT (video)
terminal. When your copy of DOS has been
personalized to handle mUltiple I/O devices, your
BASIC programs will be able to access the many I/O
devices through the PRINT and INPUT statements. (See
DOS section of this manual, chapter on
"PERSONALIZATION" for details.)

LINE U. 132
LINE #0, L

If the device expression is omitted, it is assumed to
be 0 (the console).

10 REM MUltiple I/O demonstration.
28 PRINT "T.HIS MESSAGE GOES TO THE CONSOLE."
38 PRINT U,"THIS ONE DOES, TOO."
48 PRINT U. "THIS WILL GO TO THE REMOTE PRINTER"
510 PRINT i2, IfTHIS SHOWS UP ON THE REMOTE CRT"

PRINT #1, "TEST"
PRINT #Q,X,B,7
PRINT #D+3. "CRAZY",Q
PRINT #07 (X)

INPUT #B, L3
INPUT #7. "COMMAND: ",C$

H-12

that device #0 is the
is a remote printer, and
The following program
to be printed on each of

- NORTH STAR BASIC -

A PRINT, INPUT, INPUTl or LINE statement accommodates
an optional DEVICE EXPRESSION, which consists of a
cross-hatch (#). followed by a numeric expression
which evaluates to an integer number from ~ to 7.
This expression indicates the device desired for
input or output. If used in any of these statements,
the device expression must be the first thing after
the statement's keyword. Here are some examples:

As a final example, assume
console terminal, device 1
device 2 is a remote CRT.
causes a different message
the three devices:

•,,,
·£·,,
·•·· '-./
,,
•·
,,,

•·
;·
,
·,·
·,·
·,,
··,·
;,

,,

··
i

'----'

·,
,,,
,



SEE ALSO:

INPUT ANi OUTPUT (Continued)

The PRINT/INPUT device expression, characterized by a
cross-hatch, should not be confused with the PRINT '-.-/
statement's format specification, which begins with a
per-cent sign (%).

STATEMENT: PRINT
STATEMENT: INPUT
STATEMENT: INPUTl
DOS section of this manual, chapter on PERSONALIZATION

-.

,.

- NORTH STAR BASIC - H-13

,,



STORING DATA WITHIN THE PROGRAM TEXT

STATEMENT: DATA <list of constants>

ACTION:

EXAMPLES:

The string and numeric constant values included in
the list are stored as data and may be accessed, in
order, by the BASIC program of which they are a part.
If a list contains more than one constant, each
constant must be separated from the next by a comma.

1000 DATA "STRING DATA", "NUMBER IS NEXT" ,2
20 DATA 15
115 DATA 2, 7, 25, "HI", l:'l

REMARKS: The DATA statement provides a way to
within the text of a BASIC program.
accessed by a RUNning program when a
is executed.

store information
This data may be
READ statement

,,

ERROR
MESSAGES:

SEE ALSO:

DATA statements may be placed anywhere in the
program, and are ignored by BASIC except when an
attempt is made to access the information they
contain. In other words, DATA statements are non
executable.

SYNTAX ERROR
An improperly-formed constant was placed in a DATA
statement (i.e, a string without the opening or
closing quote mark) and this results in a SYNTAX
ERROR when a READ statement attempts to access this
constant.

STATEMENT: READ
STATEMENT: RESTORE

- NORTH STAR BASIC - I-I



STORING DATA WITHIN THE PROGRAM TEXT (Continued)

STATEMENT:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR
MESSAGES:

READ <list of variables>

For each variable in the variable list, the next
sequentially-available DATA element from the
program's DATA statements is assigned to that
variable.

5 REM Example of READ
10 READ A,B
20 READ C (3) ,Q$
30 PRINT A,B,C(3), Q$
40 READ X
50 PRINT X
60 DATA 1,2,3," HI",4

Running this program yields the output:

1 2 3 HI
4

The variable and the corresponding constant in a
DATA statement must be of the same type (i.e., a
numeric constant may only be READ into a numeric
variable, and a string-constant into a string
variable).

A special internal "pointer" allows BASIC to keep
track of the "current" data element. When a program
is RUN, this pointer is initially set to to the first
data element in the program's first DATA statement,
or to "END OF DATA" if there are no DATA statements
in the program.

When a data value is READ into a variable, the data
pointer moves to the next element in the DATA
statement. If there is no more data in the
statement, the pointer is moved to the first element
in the next DATA statement which occurs in the
program. This process continues until there are no
more DATA statements, at which time the pointer is
set to "END OF DATA". After this happens, shOUld a
READ be attempted, it will result in a program error.
Unless a RESTORE statement is executed, each data
item may be READ once and only once, in the order in
which it appears in the program text.

READ ERROR
Either an attempt was made to read data once the "END
OF DATA" condition occurred (without the execution of
an intervening RESTORE), or the value was not of the

- NORTH STAR BASIC - 1-2



STORING DATA WITHIN THE PROGRAM TEXT (Continued)

same type as the variable to which it was to be
assigned.

•,

SEE ALSO: STATEMENT: DATA
STATEMENT: RESTORE

- NORTH STAR BASIC - 1-3



STORING DATA WITHIN THE PROGRAM TEXT (Continued)

STATEMENT: RESTORE
RESTORE <line number>

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

The "pointer II to the next data i tern to be READ is
moved to the first item in the first DATA statement
in the program text. If a line number is specified,
the pointer is moved to the first data item in the
DATA statement at (or the first DATA statement
occurring after) the given line.

5 REM Example of RESTORE
10 READ A \ PRINT A
20 RESTORE
30 READ A \ PRINT A
40 RESTORE 70
50 READ A \ PRINT A
60 DATA 1,2,3,4
70 DATA 5,6,7,8

Running the above program produces the output:

1
1
5

RESTORE provides a means by which the same
information in DATA statements may be READ more than
once by a program. RESTORE makes it possible to
"recycle" data (as shown in lines HI to 3e in the
example program), or "skip around" the data (as in
lines 40 and 50).

The RUN command causes an automatic RESTORE (to the
first DATA statement).

ERROR
MESSAGES: Same as STATEMENT: GOTO

SEE ALSO: STATEMENT: READ
STATEMENT: DATA

- NORTH STAR BASIC - 1-4
--



PROGRAM CON'rROL

DISUCSSION: EXECUTION AND CONTROL FLOW

The action specified by each statement in a BASIC
program is performed when that statement is
"executed". In BASIC, statements are usually
executed in a sequential fashion, one after the
other. BASIC scans a program and executes its
statements as you would read the program listing:
from lines with lower numbers to lines with greater
numbers, and. if there is more than one statement on
a line, from the leftmost statement to the rightmost
statement on that line.

The order of statement execution (also called CONTROL
FLOW) may be altered through the use of several
special BASIC statements: GOTO, IF THEN. FOR.
NEXT, EXIT, GOSUB, RETURN, and ON GOTO. Each of
these CONTROL STATEMENTs is described in greater
detail in its own section of this manual.

A control statement forces BASIC to treat the line
number it specifies or the program location it
implies as the location of the next statement to
execute. Unless another control statement is
encountered, BASIC will return to sequential
execution at the new location.

In BASIC programs, the natural flow of control is
often diverted, in order to achieve savings in
program execution time and storage requirements. For
example, repetition of program lines, a powerful
space-saver, may be accomplished by using IF ... THEN
and GOTO statements. A common repetitive "looping"
technique uses the statements FOR and NEXT (and,
occasionally, the EXIT statement as well). Often,
the program must make a choice on which of several
alternative instruction blocks is to be executed
next, based on a given condition. IF ... THEN
statements are used to evaluate the conditions and
route control to the appropriate parts of the
program. In certain situations, the ON ... GOTO
statement may be used in this capacity. Finally,
GOSUB and RETURN are used to implement subroutines,
which allow a programmer to SUbstitute single GOSUB
statements for entire large program segments,
provided the segments (subroutines) are defined
elsewhere in the program text.

- NORTH STAR BASIC - J-l



PROGRAM CONTROL (Continued)

STATEMENT: GOTO <line number>

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

A GOTO statement causes an immediate "jump" to the
specified line, instead of proceeding with the normal
sequence of statement execution. Regular sequential
execution resumes at the specified line.

10 PRINT "THIS PRINTS FIRST"
20 GOTO 40
30 PRINT "THIS NEVER PRINTS"
35 PRINT "THIS PRINTS THIRD"
37 END
40 PRINT "THIS PRINTS SECOND"
50 GOTO 35

There may be no blank between GO and TO.
GOTO is a single BASIC keyword.

Note that a <line number> must be a numeric integer
COnstant. It may not be a variable or complex
expression.

ERROR
MESSAGES: LINE NUMBER ERROR

The specified line does not exist within the BASIC
program.

OUT OF BOUNDS ERROR
The line number specified in the GOTO statement is
larger than 65535. (NOTE: This error occurs as soon
as the erroneous line is typed!)

SEE ALSO: DISCUSSION: EXECUTION AND CONTROL FLOW
STATEMENT: EXIT
STATEMENT: ON '" GOTO

- NORTH STAR BASIC - J-2



PROGRAM CONTROL (Continued)

STATEMENT: IF <logical expression> THEN <statement>
~ IF <log. expr.> THEN <statement> ELSE <statement>

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

When the logical expression is true. the statement
after the word THEN is executed. When the condition
is false, the statement after ELSE (if it is used) is
executed. If no ELSE is specified, and the condition
is false, the IF statement is ignored and execution
continues with the next statement in sequential
order. A single line number may be placed after THEN
or ELSE, and is equivalent to (and shorthand for) a
GOTO statement referencing that line number.

10 IF X=5 THEN 1000
100 IF A$="CLYDE" THEN PRINT "HI" ELSE PRINT "BAD PW"
75 IF Q(7)<>3 AND W THEN GOSUB 110 ELSE LET X=15
230 IF AS="HI" THEN IF B$="THERE" THEN PRINT "YES? "
999 IF Z THEN END

Only the THEN or ELSE part of an IF statement
(never both) will be executed for each time the IF
statement itself is executed.

The statement after THEN or ELSE may itself be an IF
statement. Such multiple IPs are said to be NESTED.
There is, of course, a rather small practical limit
as to how deeply IFs may be nested, since the whole
statement must fit on one line.

IF statements do not usually cause error messages
in and of themselves. Errors which occur during the
execution of an IF statement may usually be
attributed to the type of statement used in either
its THEN or ELSE clause, or the mis-formation of the
loqical expression. Check the section on the
appropriate type of statement or feature to track
down the cause of each individual error.

DISCUSSION: USING NUMBERS (relational and
boolean operators)
STA'rEMENT: GOTO

- NORTH STAR BASIC - J-3



,

PROGRAM CONTROL (Continued)

STATEMENT: ON <numeric expression> GOTO <list of line numbers>

ACTION:

EXAMPLES:

RE~lARKS :

ERROR
MESSAGES:

SEE ALSO:

The numeric expression is used to choose a single
number from the list of line numbers. Then~ as with
GOTO, execution is immediately transferred to the
line with the chosen number.

10 ON C GOTO 100. 200. 300. 400
105 ON X-10 GO~Q 10, 20. 30. 40. 50. 60. 70

The numeric expression must evaluate to a quantity
greater or equal to 1. There may be as many line
numbers in an ON ... GOTO statement as will fit on a
program line.

The first line number in the list will be chosen if
the expression evaluates to 1. the second if it
reduces to 2, the twentieth if it equals 20, and so
on. For example, in statement l~ above, if the value
of C is 3, then the result will be the same as GOTO
300. An ON ..• GOTO statement with N line numbers in
its list will work for integer values from 1 to N.

SYNTAX ERROR
This can happen with ON ... GOTO because the numeric
expression, when truncated, evaluated to an integer
less than 1 or greater than the number of line
numbers in the list.

TYPE ERROR
The expression specified was not a numeric
expression.

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

STATEMENT: GOTO

- NORTH STAR BASIC - J-4



,

PROGRAM CONTROL (Continued)

STATEMENT: STOP

,.

ACTION:

EXAMPLE:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

This statement causes program execution to stop.
A message is sent to the console terminal, indicating
the point in the program where the stop occurs.

20 STOP

STOP is generally used during program development
to provide temporary breakpoints at known spots
during the execution of the program. Execution of a
STOP returns the computer to DIRECT MODE. at which
time LET and PRINT may be used as direct statements
in order to change and examine, resp~ctively. the
values of variables within the program.

If CONT is used to resume program execution after
STOP, any variables modified in direct mode during
the interruption will retain the new values as the
program resumes.

Program text may also be listed during the breakpoint
provided by STOP, but, if you intend to continue with
the program using the CO NT command, you must be
careful not to change any of the program text (edit,
insert, or delete program lines) during the interim.
If you do, CONT will not work, and you will be forced
to RUN the program allover again.

None.

STATEMENT: END
COMMAND: CONT
DISCUSSION: CONTROL C, THE PANIC BUTTON
DISCUSSION: SOME BASIC CONCEPTS

.
!

- NORTH STAR BASIC - J-5



•

PROGRAM CONTROL (Continued)

STATEMENT: END

ACTION: Terminates program execution.

,

EXAMPLE
PROGRAM:

REMARKS:

10 REM PRINT n2+2=",P
20 END

END is similar to STOP, except that you can't CONTinue
after an END, nor is any message sent to the console
terminal. END causes the end of program execution
and a return to DIRECT MODE. It is useful when you
want to terminate program execution at some point in
the midst of the program.

If normal sequential execution extends past the last
statement (the end of the listing) before an END is
executed, END will be assumed as the "last"
statement. Therefore. you are not required to use
END as the last statement in the program.

ERROR
MESSAGES: None.

SEE ALSO: STATEMENT: STOP

~ .•
- NORTH STAR BASIC - J-6



PROGRAM CONTROL (Continued)

DISCUSSION: THE fUR-NEXT LOOP

BODY OF l'HE LOOP

BASIC includes facilities for the FOR-NEXT loop
(namely the statements FOR and NEXT) in order to
provide tor repetition of any arbitrary block of
BASIC statements. The block to be repeated (also
called the BODY of the loop), symbolized here as
{BODY}, is "sandwiched" between a FOR statement and a
NEXT statement.

EXAMPLE U

1~ FOR 1=1 TO 1~

{BODY)
99 NEXT
100 REM More program statements.

In EXAMPLE #1, the statements represented by {BODY}
will be repeated Ie times unless specific action is
taken within the body to terminate repetition prior
to the completion of the 10th cycle (for example, see
the paragraphs on EXIT, below).

THE CONTROL VARIABLE AND THE LIMIT VALUE

In line Ie, I, a numeric variable, is called the
CONTROL VARIABLE of the loop. By using I as a
counter, BASIC will be able to know when to quit
repeating {BODY}. In the example, the first time
{BODY} is executed, I will be set to 1 (the INITIAL
value, as specified in the FOR statement). After
that, whenever execution proceeds through {BODY} and
reaches the NEXT statement in line 99, I will be
increased by 1. At such times, BASIC will compare I
against 10 (the LIMIT value set in line 10). If I is
less than or equal to the limit value, execution
returns once more to the start of {BODY}, and the
cycle begins again. On the other hand, if I is
greater than the limit value, then repetition ceases,
and execution continues beyond the NEXT statement (in
the case of EXAMPLE #1, at line 100).

THE OPTIONAL STEP VALUE

In the example, I was increased by 1 after every
repetition of the body. It is often useful for the
value of the control variable to be increased by a
different amount than 1 each time. or perhaps it
should even be decreased! This is accomplished by
adding a STEP clause to the FOR statement.

- NORTH STAR BASIC - J-7



PROGRAM CONTROL (Continued)

EXAMPLE #2

10 FOR J=l TO 10 STEP 2
{BODY)

99 NEXT

EXAMPLE #3

10 FOR K(3)=5 TO 1 STEP -1
{BODY)

99 NEXT

EXAMPLE #2 will repeat {BODY} five times, with
successive values of J being 1, 3, 5, 7, and 9. J is
increased by 2 after each iteration.

In EXAMPLE #3, {BODY} is also repeated 5 times, but
the value of K(3) will decrease by 1 for each
iteration.

If the STEP clause is not used in a FOR, then the
step value is always assumed to be 1.

Note that, when the step value is positive, the
initial value must be less than or equal to the limit
value. When the step value is negative, the initial
value must be greater than or equal to the limit. If
these rules are not followed, {BODY} will never be
executed, as in the next example:

EXAMPLE #4

10 FOR Q=5 TO 1
20 PRINT "THIS LINE WILL NEVER BE EXECUTED"
99 NEXT
100 PRINT "PAST THE LOOP"

RUNning the above program yields only the message

PAST THE LOOP

on your terminal. In this case, line 2~ is the body,
but even before it can be executed, BASIC sees that
the value of Q is greater than 1, and that, with an
implied step of 1, Q will never acquire the limit
value of 1, so it does not execute the body at all,
and jumps down to line 10~ to continue execution.

The initial, limit, and step value expressions in a
FOR statement need not be integer in nature. Thus,
it is possible to have a loop such as

•

- NORTH STAR BASIC - J-B



PROGRAM CONTROL (Continued)

EXAMPLE *5

10 FOR 1=.1 TO 10.5 STEP .1
{BODY}

99 NEXT
100 REM Above loop will repeat 105 times.

Because I is a regular BASIC variable, its value may
be compared with others or changed outright during
repetition, using the IF and LET statements,
respectively. Changing the value of the control
variable, however, should be done with great care,
and is an advanced technique not recommended for the
beginning programmer. It is not possible to change
the initial, limit, or step values of the loop during
iteration. They are permanently set for the given
loop when its FOR statement is first executed. (It
is suggested that the control variable not be used in
the LIMIT or STEP expressions.)

FOR-LOOP NESTING

FOR loops may be executed while other FOR loops are
already in progress. This is called NESTING of FOR
loops.

EXAMPLE *6
'-'

10 FOR 1=0 TO 9
, 20 FOR J=0 TO 9,

30 PRINT I,J
, 40 NEXT,

50 NEXT

In EXAMPLE #6, the loop controlled by J is the body
of the loop controlled by I. The statements from 20
to 40 will be repeated 10 times (as I goes from 0 to
9), but these statements in themselves comprise a
loop which will also repeat 10 times. The net effect
is that, for every change in J, line 30 will have
been executed once, but for every change in I it will
have been repeated 10 times. As a result of EXAMPLE
#6, line 30, the body of the inner loop, will be
repeated 10 times 10, or 100, times. The following
is a sample of the output generated:

{see next page}

- NORTH STAR BASIC - J-9



,

PROGRAM CONTROL (Continued)

o 1
o 2
o 3

. etc.

9 7
9 8
9 9

FOR loops may be nested to any arbitrary depth.
However, there must always be a NEXT to match each
FOR. Also, a different variable must be used to
control each nested loop.

THE OPTIONAL CONTROL VARIABLE IN NEXT

The control variable of a loop may optionally be
specified in the NEXT statement which ends that loop.

EXAMPLE n

10 FOR 1=1 TO 10
20 FOR J=l TO 10
30 PRINT I,J
40 NEXT I
50 NEXT J

Inclusion of the control variable in the NEXT
statement is useful in clarifying the program text
(determining which NEXT goes with which FOR). If the
optional control variable is specified in the NEXT
statement, BASIC will perform a syntax check during
program execution and will cause a program error if
the control variable specified in the NEXT is not the
same as that specified in the matching FOR.

USING EXIT

A FOR loop may be terminated before all the specified
repetitions have been performed if an EXIT statement
is"executed. EXIT is used to transfer program
control to a line outside the loop -- that is, before
the loopi s FOR statement or after its NEXT. EXIT is
like a GOTO, in that it causes a transfer of control
to the specified line number, but it also tells BASIC
to end the current FOR loop -- no more repetitions
will be necessary. BASIC uses memory storage to
remember information about the FOR loop while it is
repeating. EXIT tells BASIC to release the memory
used by the current loop. If it is not used to jump
out of a FOR loop, then subsequent loops may not

- NORTH STAR BASIC - J-10 ,



SEE ALSO,

PROGRAM CONTROL (Continued)

execute correctly.

EXAMPLE #8

10 REM Assume a I0-element array A.
20 REM The following searches A from
30 REM element 1 to 10 for the first
40 REM nonzero element. The index of
50 REM this element will be N. If all
60 REM elements are 0, N will also be 0.
70 REM A FOR-loop is used for the scan,
75 REM and EXIT stops scan if nonzero found.
76 REM
80 FOR N=1 TO 10
90 IF A(N)<>0 THEN EXIT 130
110 NEXT
120 N=0 \ REM By this point, A is all zeroes.
130 REM By this point. N contains
140 REM correct index or zero.

EXITING FROM NESTED LOOPS

Several nested loops may all be terminated
prematurely at once using EXIT, but a separate EXIT
statement must be used for each embedded loop. For
example, if execution is proceeding at line 70 in the
inner loop of a two-deep nest (similar to EXAMPLE
#6), and it is desired to go to line 600, outside the
outermost loop, the following example re?resents an
efficient method of doing so using the EXIT
statement:

EXAMPLE #9

70 EXIT 71
71 EXIT 600

STATEMENT: FOR
STATEMENT: NEXT
STATEMENT' EXIT

- NORTH STAR BASIC - J-11



r

PROGRAM CONTROL (Continued)

STATEMENT: FOR <control variable> = <initial value> TO <limit value>
FOR <control variable> ; <initial value> ~

TO <limit value> STEP <step value>

ACTION:

EXAMPLES:

REMARKS:

Begins a FOR-NEXT loop.

15 FOR J=l TO 10 \ REM will cause 10 iterations.
25 FOR Q(7)=3 TO 1 \ REM No looping will occur.
4~ FOR A=B*7 TO SQRT(X)
5~ FOR X=.l TO 1.3 STEP .1
9~ FOR J=3 TO 1 STEP -1
7~ FOR I=l~+J TO l~~+J STEP D(X)

For a complete description of the FOR-NEXT loop,
see DISCUSSION: THE FOR-NEXT LOOP.

The INITIAL, LIMIT, and optional STEP values may be
any numeric expressions.

If the initial value is greater than the limit value
and step is positive, or if initial value is less
than the limit and step is negative, the body of the
loop will not be executed.

ERROR
MESSAGES: MISSING NEXT ERROR

BASIC could not find a NEXT statement to associate
with the FOR.

SEE ALSO: DISCUSSION: THE FOR-NEXT LOOP
S'TA'rEMENT: NEXT
STATEMENT: EXI1'

- NORTH STAR BASIC - J-12



•

,,
•

PROGRAM CONTROL (Continued)

STATEMENT: NEXT
NEXT <numeric variable>

-

•

ACTION:

EXAMPLES:

REMARKS:

Terminates execution of the loop which starts with
the matching FOR statement. For a complete
description of FOR-NEXT loops, see DISCUSSION: THE
F'OR-NEXT LOOP.

If the optional numeric variable name is specified as
part of the NEXT statement, a check is made to match
that variable name against the control variable
specified in the corresponding FOR statement.

NEXT
NEXT Q
NEXT A(l)

It should be noted that the "check variable" in
the NEXT statement, while optional in North Star
BASIC, is required in almost every other dialect of
the BASIC language. The use of NEXT without the
check variable can speed program execution.

Upon normal completion of a FOR-NEXT loop, the
control variable will contain the first value that
exceeds the limit. To illustrate, here is an example
program:

10 FOR K=l TO 5 STEP 2
20 NEXT K
30 PRINT K

When RUN, the above generates the following output:

7

Note that NEXT should not be used as the THEN or ELSE
part of an IF statement.

ERROR
MESSAGES: CONTROL STACK ERROR

An attempt was made to execute a NEXT statement with
no FOR loop in effect. Also, this error occurs when
the variable specified in the NEXT statement doesn't
match the control variable specified in the previous
FOR statement. This usually means that loops are
improperly nested.

SEE ALSO: STATEMENT: FOR
DISCUSSION: THE FOR-NEXT LOOP

- NORTH STAR BASIC - J-13



PROGRAM CONTROL (Continued)

STATEMENT: EXIT <line number>

AcnON:

EXAMPLE:

REMARKS:

Terminates execution of the currently-running
FOR-NEXT loop and transfers execution to the
specified line.

20 EXIT 95

EXIT is a special form of GOTO, and is used for
roughly the same purpose as GOTO -- to transfer
program execution from one point to another. The
only difference is that EXIT should be used only to
"jump" from some point within an active t'OR-NEXT loop
to a point outside the loop. 'tihen "jumping" from
point to point within a FOR loop, or when no loop is
active. GOTO should be used.

Each use of an EXIT statement terminates only the
current FOR-NEXT loop. See DISCUSSION: THE FOR-NEXT
LOOP for the correct method of EXITing from nested
loops.

ERROR
MESSAGES: CONTROL STACK ERROR

EXIT was used when no FOR-loop was being executed.

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

SEE ALSO: DISCUSSION: THE FOR-NEXT LOOP
STATEMENT: NEXT
Sl'ATEMENT: FOR
STATEMENT: GOTO

- NORTH STAR BASIC - J-14



PROGRAM CONTROL (Continued)

DISCUSSION: SUBROUTINES

When writing programs, yOll will often find that you
need to repeat what amounts to essentially the same
sequence of statements at various separate locations
in the program text. For example, your program may
require the user to answer "yes" or "no" to certain
questions. After writing the program, you find that
sequences similar to that below occur several times
in the text:

10 REM Get yes or no answer.
15 HEM Keeps trying till Y or N ans given.
20 INPUT "PLEASE ANSWER YES OR NO: ",A$
30 IF A$="" THEN 20\REM No ans given.
40 A$=A$ (1.1)
50 IF A$="Y" THEN 70\REM OK ans
60 IF A$<> liN" THEN 20\REfol Not = Y either.
70 REM At this point, ans was Y or N.

It is certainly troublesome for you (and a waste of
program space besides) to type the same sequence of
statements over and over again. If you required
several such answers at one point in the program, of
course, you could use a loop to repeat the statements
as often as necessary. However, the problem is
different when you must perform the same actions in
different parts of the program.

A very nice solution to this problem involves writing
just one copy of the segment at one point in the
program, then somehow telling BASIC to "re-execute"
that part whenever necessary. That is, at those
points in the program where you need to get a yes or
no answer, BASIC would "jump over" to the part of the
program which gets the answer, then "return" to the
original point to continue on with whatever should
happen after the answer has been obtained.

In this situation, the "answer" segment would be
called a SUBROUTINE. This subroutine would be
"invoked" (or "called") from other parts of the
program to perform its single, important task.

North Star BASIC makes available two special
statements which provide subroutine capability.
(Both are described in detail in their own sections.)
The first is GOSUB, which is used to call a
subroutine. The GOSUB keyword is followed by a line
number, which tells BASIC where the subroutine begins
in the program text. BASIC reacts to a GOSUB by
transferring execution to the specified line number,

-.

- NORTH STAR BASIC - J-1S



PROGRAM CONTROL (Continued)

while "remembering" the point where the subroutine
was called. (The action of the GOTO is similar, but
no calling location is remembered, which makes GOTO
unsuitable for subroutine calling.) When the
subroutine is finished, BASIC uses the "remembered ,I

location to return to the point in the program
immediately after the subroutine was called. BASIC
knows when a subroutine is finished only when it
executes a RETURN statement. RETURN merely says to
BASIC, "go back to the calling point now". It is not
necessary to make RETURN the last physical statement
in a subroutine, though it turns out that, in
practice, this usually happens.

The I' answer II program segment above may be turned into
a legal BASIC subroutine merely by replacing the last
REM statement with RETURN. and translating the
appropriate line numbers:

1000 REM Subroutine example.
1010 REM Get yes or no answer in A$
1015 REM Keeps trying till Y or N ans given.
1020 INPUT "PLEASE ANSWER YES OR NO: ",A$
1030 IF A$="l1 THEN l020\REM No ans given.
1040 A$=A$(l,l)\REM Examine 1st char only.
1050 IF A$="y" THEN 1070\REM OK ans.
1060 IF A$<> "N" THEN 1020\REM Not = Y either.
1070 RETURN

The subroutine may now be called at any point in the
program where it is desired to retrieve a yes or no
answer. Here is an example, showing how the
subroutine at line 1000 would be called:

40 PRINT "Are you over 6 feet tall?"
50 GQSUB 1000 \ REM Collect answer in A$
60 REM More program statements.

- NORTH STAR BASIC - J-16



PROGRAM CONTROL (Continued)

STATEMENT: GQSUB <line number>

,,.

-.,

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

The location of the statement immediately after
the GOSUB statement is "remembered" by BASIC, and
program execution jumps to the specified line. GOSUB
is used to execute a sequence of statements, called a
SUBROUTINE, elsewhere in the program. Execution will
resume at the "remembered" location if a RETURN
statement is executed as part of the subroutine.

10 REM Illustration of subroutines.
2e PRINT "READY TO CALL SUBROUTINE"
3e GOSUB Ieee
40 PRINT "WE ARE BACK!"
5e END

This example assumes that there also exists a
subroutine beginning at line 1000 which sends the
message "NOW IN THE SUBROU'fINE" to the terminal. If
so, RUNning the program produces the following
results:

READY TO CALL SUBROUTINE
NOW IN THE SUBROUTINE
wE ARE BACK

A subroutine may be called while another is in
progress. The only limit on this "subroutine
nesting" is the amount of memory available during
program execution. ("Remembering" the location of
the "return" poin t takes memory space.)

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

STATEMENT: RETURN
STATEMENT: GOTO
DISCUSSION: SUBROUTINES

I
•
I

·,•

- NORTH STAR BASIC - J-17



PROGRAM CONTROL (Continued)

STATEMENT: RETURN

ACTION:

EXAMPLE:

REMARKS:

To conclude a subroutine, RETURN is used to cause
program execution to resume immediately after the
GOSUB statement which called the subroutine.

1~99 RETURN

There are two versions of the RETURN statement
in North Star BASIC. This version is for use with
subroutines only. Another is used with user
functions. See Chapter K, FUNCTIONS, for details on
that version of RETURN.

ERROR
MESSAGES: CONTROL STACK ERROR

The RETURN statement was executed when no GOSUB was
currently active.

SEE ALSO: STATEMENT: GOSUB
DISCUSSION: SUBROUTINES

- NORTH STAR BASIC - J-IB

)



,.

FUNCTIONS

DISCUSSION: FUNCTIONS

BUILT-IN FUNCTIONS

When you want to compute the cosine or the square
root of a number within your program, how can you do
this? Of course, it's always possible to write a
subroutine in BASIC to compute the cosine or square
root of an arbitrary number, but doing so conSumes
your time, is likely to slow down your program if the
partiCUlar computation is needed often, and certainly
enlarges the program.

BASIC includes built-in FUNCTIONS, two of which
handle cosine and square root calculations,
respectively. The other available built-in functions
compute many different values, both numeric and
string, which programmers often need, and whose
availability makes the task of writing efficient
programs easier.

when writing a program, if you need the cosine of ~,

write COS(~). If you want the square root of 9, use
SQRT(9). The function can be used in a program
wherever the actual number can. COS(0) stands for
(and can be used in place of) the number 1. writing
SQRT(9) is the same as writing 3.

ARGUMENTS

The value in parentheses in a function call is called
an ARGUMENT to the function. The function will use
the value(s) of the specified arqument(s) to generate
the function value. SQRT(4), for example, useS the
numeric value 4 to generate its square root, 2.

All functions in North Star BASIC require at least
one argument, and some may require more. If a
function requires more than one argument, it will
expect them to be separated by commas to form an
ARGUMENT LIST within the parentheses.

Expressions can be used as arguments. COS(2*7)
represents the same number as COS(l4). If the
variable A contains the number 14, then COS (A) also
is the same as COS(14).

Functions can be used in expressions. Thus, the
statement

A=2*SQRT(lBB)

- NORTH STAR BASIC - K-I



FUNCTIONS (Continued)

would put the value of 20 in A.

Because expressions can be arguments, and functions
can be expressions, functions can be used as
arguments. COS(SQRT(100)/10-1) is the same as
COS(0).

You must supply functions with the exact number and
types of arguments they require, in exactly the order
required, or else when the program runs and the
erroneous function call is found, BASIC will halt
execution and complain of a SYNTAX ERROR. Such an
error will occur, for example, if you attempt to use
SQRT("HI") in a program or direct statement. The
SQRT function wants a numeric argument, and "HI" is a
string (see DISCUSSION: USING STRINGS). COS(2,3)
causes a SYNTAX ERROR becuase the COS function wants
only one numeric argument.

The following pages contain a list and description of
all the functions built-into North Star BASIC. Each
function description includes the name of the
function, the order of expected arguments, as well as
the type (numeric or string) and purpose of each. A
short paragraph describes the value represented by
the function as well as how the arguments relate to
that value.

FUNCTIONS USEFUL IN MATHEMATIC OPERATIONS

ABS«numeric expression»
Returns the absolute value of the numeric expression.
ABS(3)=3, ABS(-3)=3, and ABS(0)=0.

SGN«numeric expression»
Returns 1, 0, or -1, indicating whether the <numeric
expression> is positive, zero-valued, or negative,
respectively. SGN(10)=1, SGN(0)=0, and SGN(-3.2)=-1.

INT«numeric expression»
Returns the greatest integer value less than or equal
to the value of the argument. INT(3)=3, INT(3.9)=3,
and INT(-3.5)=-4.

LOG«numeric expression»
Returns an approximation to the natural logarithm of
the value of the <numeric expression>. If LOG is
called with an argument value less than or equal to
zero a program error will occur. LOG(1)=0,
LOG(7)=1.9459l0l, and LOG(.1)=-2.3025851

•,

- NORTH STAR BASIC - K-2



,,,

FUNCTIONS (Continued)

EXP«numeric expression»
Returns an approximation to the value
the power of the numeric expression.
EXP(2)=7,3890562, EXP(-2.302585l)=.1,
EXP(1)=2.7l828l7

of e raised to
EXP(0)=L
and

,,

SQRT«numeric expression»
Returns an approximation to the positive square root
of the numeric expression. A program error will
occur if this function is called with a negative
argument. SQRT(0)=0, SQRT(10)=3.l622776, and
SQRT(.3}=.54772256

SIN«numeric expression»
This function computes an approximation to the
trigonometric sine of the value of the numeric
expression. The expression must specify an angle in
radians. (Note that 2 * pi radians = 360 degrees.)
SIN(0)=0, SIN(3.l4l5926/2)=1.

COS«numeric expression»
COS computes an approximation to the trigonometric
cosine of the value of the numeric expression, which
must specify an angle in radians. COS(0)=1,
COS(3.l4l5926/2)=0.

ATN«numeric expression»
The ATN function computes an approximation to the
trigonometric arctangent function. The angle value
returned is expressed in radians. ATN(5)=1.3734007,
ATN(1.7)=1.0390722.

FUNCTIONS USEFUL IN STRING OPERATIONS

LEN«string name»
Returns the current length of the string held in the
string variable named as the argument. If A$="CAT"
then LEN(A$) will be equal to 3. If A$ holds the
null string, then LEN(A$) will return 0.

CHR$«numeric expression»
The CHR$ function returns a one-character string as
its value. The argument value (in decimal) specifies
the ASCII character code for the character to be
returned in the string. Note that the argument to
CHR$ can be any integer in the range of 0 to 255.
CHR$ (65}="A", CHR$ (97}="a", CHR$ (32) =" " (space), and
so on.

ASC«string constant, string variable, or substring reference»
Returns a numeric value -- the numeric ASCII code of
the first character contained in the argument. The

- NORTH STAR BASIC - K-3



,

FUNCTIONS (Continued)

argument must not
ASC ("CLUNK") =67.
functions. )

be the null string.
(Note that CHR$ and

Ase ( "B" ) =66 ,
Ase are inverse

VAL«string expression»
Converts the value of the string expression to a
number and returns that number as its value. If the
expression doesn't evaluate to a legal numeric
constant, then a program error occurs. Leading
blanks are ignored. VAL("123")=(the number) 123.
VAL("000000")=l!l. VAL("abcde lO

), VAL(" "), and
VAL("") will cause errors. Note that if any non
numeric characters follow the numeric constant which
is at the beginning of the string expression, they
will be ignored. For example, VAL("123XYZ")=123, but
VAL("XYZ123") causes an error.

STR$«numeric expression»
This is the inverse function of VAL -- it converts
the numeric value of its argument into a string
representation of that number, and returns that
string as the function value. The format of the
string depends upon the default format as specified
in a PRINT statement (i.e., free-format if no
previous PRINT statement has specified a default
format). See STATEMENT: PRINT and DISCUSSION: PRINT
FORMATTING for further details.

FUNCTIONS USEFUL FOR SPECIALIZED INPUT

INCHAR$«numeric expression»
This function will await the typing of a single
character at the input device specified by number in
the numeric expression. The character will be
returned as a single character string. Control
characters as well as printing characters will be
returned. Control-C will be returned only if
control-C program-interruption has been disabled.
(See DISCUSSION: CONTROL-C, THE PANIC BUTTON.) The
character will not be echoed by BASIC (printed on the
terminal when its key is pressed). Assuming device 0
is the system console and device 1 is a remote
terminal, then INCHAR$(0) will return a single
character typed at the console, and INCHAR$(I) will
return one character typed at the remote location.
The following short program will fetch an individual
character from the console terminal and will echo it
on that terminal's screen, printer, etc:

10 T$=INCHAR$(0) \ REM
20 PRINT T$, \ REM

Get
and

the character
echo it.

...

- NORTH STAR BASIC - K-4



,
•

, '"--',

•

•,,

,

,,

•,
•

FUNCTIONS (Continued)

INP«numeric expression»
This function performs an B080 or Z80 IN instruction
from the input port specified by the argument value.
The numeric value returned by the function is the
contents of the accumulator (in the range of 0 to
255) after the IN instruction. Note that INP will
not wait for valid data, as do INCHAR$, INPUT, and
INPUT!, but instead fetches whatever byte value
exists at the input port, whether or not that value
represents useful data.

FUNCTIONS USED IN MANIPULATING DISK FILES

TYP«numeric expression»
This function returns as its value a number which
indicates the type (numeric = 2, string = 1, end-oE
file = 0) of the next data item in the open disk file
with open file number given by the value of the
function's argument. See DISCUSSION: DATA FILES for
details.

FILE«string expression»
Returns a number corresponding to the type of the
file specified by the <string expression>, which must
evaluate to a legal disk file name as defined in
DISCUSSION: DATA FILES. If the argument is not a
legal file name, or is not the name of a disk file on
a currently loaded diskette, then the value -1 is
returned. Assuming that "ABC" is the name of a BASIC
program file on a disk in drive 2, then FILE("ABC,2")
will return the value 2. FILE("DOS") will return a 0
if the diskette in drive 1 is a system diskette.

MISCELLANEOUS FUNCTIONS

RND«numeric expression»
This function returns a pseudo-random numeric value
between 0 and 1. The number generated 1s dependent
upon the previous number generated by the function.
The very first number in the sequence is called the
"seed", or starting value. If the value of the
argument is negative, BASIC selects a random seed
(based upon the status of the disk system), and
computes the value of the function from it. (The
"randomizing" effects of using RND with a negative
argument are enhanced if user-input is requested
between the last disk access and the "negative" call
to RND.) If the argument evaluates to 0, the
previously computed value is used to generate another
pseudo-random value in the sequence. If the argument
reduces to a value between 0 and 1, this number is

,,

;
•
·,,,,
· ~,,
·
••••·••

- NORTH STAR BASIC - K-5



FUNCTIONS (Continued)

used as the new seed, the sequence is restarted, and
the first value generated from the new seed is
returned as the value of the function. The following
program will set a random seed and then print 10
pseudo-random values:

10 J=RND(-l)
20 FOR J=l TO 10
30 PRINT RND(0)
40 NEXT

EXAM«numeric expression»
The EXAM function returns the contents of the
computer memory byte addressed by the value of the
<numeric expression>. The argument should evaluate
to an integer from 0 to 65535. The value returned
will be numeric, an integer from 0 to 255.

FREE«numeric expression»
Returns the current total number of bytes remaining
in the BASIC memory for additional user-program or
data. Free storage, as this memory area is called,
is also used for internal "bookkeeping" storage and
storage of temporary values used by BASIC, such as
string values during concatenation. The argument
value, as long as it is numeric, is ignored, and most
programmers use 0.

TAB{<numeric expression»
This function can only be used in a PRINT statement.
Use of the TAB function will cause the cursor or
print-head of the output device specified in the
PRINT statement to advance to the character position
specified as argument to TAB. BASIC accomplishes
this by printing the appropriate number of spaces.
The first character position on a line is the 9th
position, all others being numbered sequentially from
0. If the cursor or print-head is past the specified
position, then it will not move at all.

CALL«numeric expression»
CALL«numeric expression>, <numeric expression»

CALL permits BASIC programs to use machine-language
subroutines. The value returned is an integer from 0
to 65535, which represents the value in the HL
register-pair when the machine-language subroutine
returns control to BASIC. The first argument to CALL
is a numeric value from 0 to 65535 which represents
the decimal value of the memory address where the
machine-language subroutine begins. The optional
second argument, also an integer value from 0 to
65535, will be passed to the machine-language routine

- NORTH STAR BASIC - K-6 ,



FUNCTIONS (Continued)

in the DE register pair. For more information on
CALL and the use of machine-language subroutines in
general, see DISCUSSION: MACHINE LANGUAGE
SUBROUTINES.

•·••
- NORTH STAR BASIC - K-7



FUNCTIONS (Continued)

USER-FUNCTIONS

Functions may be written in North Star BASIC as part
of a BASIC program. They are accessible (just as
built-in functions are) to any part of the program.
These USER-FUNCTIONS can return either string or
numeric values, and can accept as many string and/or
numeric arguments as are necessary to compute the
function value.

FUNCTION NAMES

User-functions take names of the following form: the
two letters FN followed immediately by a regular
string or numeric variable name, as in FNX, FNQ7,
FNA$, FNZ3$, etc. The type of the variable-name part
of the function name determines the type of the value
that the function returns. FNX, therefore, is a
numeric user-function, while FNA$ returns a string
value. Note that user-function names are separate
and distinct from variable names. In particular, the
values returned by FNA$ (for example), will not
affect the value stored in variable A$, nor will
assignment to A$ change the value that FNA$ returns.

SINGLE-LINE FUNCTIONS

A user-function can be defined by a single line, or
may require many lines to define. For example, the
following is a one-line user-function:

10 DEF FNR(V,P)=INT((V*10Tp)+.5)!(10Tp)

FNR, as defined in the DEF statement above, will
return as its value V rounded-up to the P-th decimal
place. For example, FNR(3.l415,2) makes V stand for
3.1415, and P for 2. The value returned will be
3.14.

PASSING VALUES TO USER-FUNCTIONS

A DEF statement must include a list of string and/or
numeric variable names, called PARAMETERS to the
function. This parameter list is enclosed in
parentheses following the function name. For
example, in the following DEF statement, X$, Y, and Z
are parameters to function FNW:

50 DEF FNW(X$,Y,Z)=LEN(X$)+Y+Z

.~.

A FUNCTION CALL must
numeric expressions.

include a list of string and/or
This expression list is

- NORTH STAR BASIC - K-8



,
FUNCTIONS (Continued)

enclosed in parentheses following the function name.
When a function is called, the values of the
expressions in the expression list are assigned, one
by-one, left-ta-right, to the corresponding variables
in the parameter list of the called function. After
this assignment process, the variables named in the
parameter list will contain the corresponding values
from the expression list and can be used in the body
of the function in computing the function value.

The number of expressions in the function call's
expression list must match the type of the
corresponding parameter in the parameter list. If
the types or number of parameters in the function
definition do not match the types or number of
expressions in the function call, an ARGUMENT
MISMATCH ERROR or a SYNTAX ERROR will occur.

NUMERIC PARAMETERS

At function call time, before each numeric variable
in the parameter list is assigned its value from the
expression list, the value of the variable is saved
by BASIC. When function execution is completed, the
saved values of the numeric variables from the
parameter list are restored as the values of those
variables. Thus, the values of the numeric variables
from the parameter list after the function call is
completed remain the same as before the function was
called. This means that the numeric parameters of a
function may be thought of as separate variables when
used during function execution.

Try the following:

10 DEF FNX (B) =B* 3
20 B=2 \ PRINT B
30 PRINT FNX (3)
40 PRINT B

B prints-out as 2 before as well as after FNX is
called, even though B=3 during the ev~luation of FNX
because of the B-value of 3 supplied in parentheses
in the function call.

STRING PARAMETERS

Unlike those of numeric parameters, the values of
string parameters of a function are not saved at
function call time. Thus, after function execution
is completed, those variables will retain the most
recent values they acquired during function

c, - NORTH STAR BASIC - K-9



FUNCTIONS (Continued)

execution. Note that the assignment of string
expressions to string parameters at function call
time follows the same rules as assignment to string
variables in LET statements. In particular, if the
string parameter has not been DIMensioned as a string
variable before the function call, it will
automatically be DIMensioned to maximum length of l~.

To contrast the treatment of string and numeric
parameters at function call time, try this program:

10 DEF FNQ(X,X$)=ASC(X$)+X
20 X=7 \ X$="FIRST"
30 PRINT X$, X
40 PRINT FNQ (1, "NEXT")
50 PRINT X$,X

Note that, although the value of the numeric variable
X is saved while the name of X is used for an
argument to FNQ, the same is not true for X$. After
the function is evaluated, X$ still retains the value
it was assigned during its use as FNQ argument.

MULTI-LINE USER-FUNCTIONS

The second type of user-function, the multiple-line
function, permits a value to be computed and RETURNed
by a set of one or more BASIC statements, as opposed
to the single expression of the single-line function.
The operation and purpose of multi-line functions
therefore closely parallels that of subroutines.
However, multi-line functions permit the easy passing
of arguments, and the return of a single, computed
result value.

The definition of a multi-line function employs the
DEF statement, but without the "value equation"
necessary to single-line function definitions. The
DEF statement which begins a multi-line function
contains only the keyword DEF, the name of the
function, and the list of its parameters:

10 DEF FNM(X,M)

The statements which compute the function value
follow this line. When the value has been computed,
a special version of the RETURN statement causes
function execution to cease, and specifies the value
to be RETURNed as the function value. Finally, to
signal the physical end of the function definition
itself, the FNEND statement is used. As an example,
add to the definition of FNM (started in line 10,

- NORTH STAR HASIC - K-10



,,

;

,,

,, '-'

FUNCTIONS (Continued)

above) so that it becomes a function which RETURNs
the value of X modulo H, that is, the remainder
generated when X is divided by M:

10 DEF FNM(X,M)
20 IF M<=0 OR M<>INT(M) THEN 40
30 RETURN ABS(X)-(INT(ABS(X)/M)*Mj
40 PRINT "ERROR IN MODULO" \ RETURN -1
50 FNEND

In general, multi-line functions (as opposed to
single-line ones) are needed when the algorithm which
computes the function value is too complex to fit on
one line as a single expression.

SOME FINAL NOTES

Functions cannot be defined within other functions.
One definition must finish before another can begin.
In particular, a "FUNCTION DEF ERROR" will occur if
you forget to include the FNEND which must conclude
every multi-line function definition, then, later in
the program text, attempt to define another function.

All user-functions must have at least one (1)
parameter. It is not necessary to use the parameter
in computation, but it must be a part of the
definition, nevertheless.

It is not possible to pass entire numeric arrays as
arguments to user-functions, but individual elements
of arrays, like simple variables, are allowed. Thus,
FNQ(A(3) ,"GAIL") is a proper call of the function
given as example above.

User-functions cannot be called in direct mode. If
you USe a statement in direct mode which includes an
expression with a call to a user-function in it, you
will get an "ILLEGAL DIRECT ERROR".

,,

,,,,
,
, '-'
•,
,,,.,
:

SEE ALSO: STATEMENT: DEF
STATEMENT: RETURN (CHAPTER K)
STATEMENT: FNEND

- NORTH STAR BASIC - K-ll



,

FUNCTIONS (Continued)

STATEMENT: DEF <function name) «parameter list»=<expression>
DEF <function name)«parameter list»

ACTION:

EXAMPLES:

REMARKS:

The first form defines a single-line user-function,
numeric or string. When evaluated, the single-line
function returns the value of the expression on the
right side of the equal sign. The type of the
expression must match the type of the function name,
string or numeric.

The second form begins the definition of a multi-line
user-function. The function value in this case is
determined by the expression in the RETURN statement
used in the body of the function definition itself.
The type of the expression in any RETURN statement in
the function body must be of the same type as the
function name.

A user-function name consists of the letters FN
followed by a string or numeric variable name (such
as FNA$, FNQ7, etc.).

(single-line)
70 DEF FNH(X,Y)=SQRT((XT2)+(YT2)) \ REM Hypotenuse
45 DEF FNU$(L$)=CHR$(ASC(L$)-32) \ REM Low to uPP case

(multi-line)
110 DEF FNQ(A,B,C)
589 DEF FNA7$(A$,A,M)

The addition of the FN prefix distinguishes function
names from variable names. FNA and variable A are
not the same, nor even necessarily related.

If a DEF statement is encountered during program
execution, then execution will skip forward to the
first statement after the definition. Function
definitions may be located anywhere in the program
text. Function definition occurs before program
execution begins.

ERROR
MESSAGES: FUNCTION DEF ERROR

An (apparently) single-line function was defined
improperly, or an attempt was made to define a
function within the definition of a multi-line
function.

SEE ALSO: DISCUSSION: FUNCTIONS (user-functions)
STATEMENT: RETURN (CHAPTER K)
STATEMENT: FNEND

- NORTH STAR BASIC - K-12

,,
•,
•



-,
FUNCTIONS (Continued)

STATEMENT: RETURN <string or numeric expression>

·

ACTION:

EXAMPLES:

REMARKS:

The evaluation of the multiple-line user-function
currently in progress terminates. The function value
becomes the value of the expression in the RETURN
statement.

10 RETURN F$+" ,2"
20 RETURN A
65 RETURN X+3
99 RETURN "CONSTANT"

Do not confuse this form of the RETURN statement with
that which is used for subroutines. Improper
utilization of this form to conclude a subroutine, or
of the subroutine form to terminate a multi-line
user-function will result in a SYNTAX ERROR.

The value RETURNed by a multi-line function must be
of the same type as the function name. String
functions may not RETURN numeric values, and numeric
functions may not RETURN string values.

ERROR
MESSAGES: SYNTAX ERROR

The RETURN expression doesn't match the function
type.

•

·
··----,
-
··- '-'··,
··,··I

SEE ALSO: DISCUSSION: FUNCTIONS (user-functions)
STATEMENT: FNEND
STATEMENT: DEF
STATEMENT: RETURN (CHAPTER J)

- NORTH STAR BASIC - K-13



FUNCTIONS (Continued)

STATEMENT: FNEND

ACTION: FNEND marks the end of the segment of program
text which constitutes a mUltiple-line user-function
definition.

EXAMPLE
FUNCTION: 10 DEF FNF(X) \ REM Compute factorial.

15 X=INT(ABS(X)) \ REM Eliminate bad arguments.
20 IF X=0 OR X=l THEN RETURN 1 ELSE RETURN FNF(X-I)*X
30 FNEND

REMARKS: The FNEND statement should not be confused
with the RETURN statement used to end multi-line
user-function execution.

The FNEND statement may not appear on the same
program line as a DEF statement.

ERROR
MESSAGES: CONTROL STACK ERROR

The FNEND statement is not supposed to be executed.
This error results when an FNEND statement is
executed.

FUNCTION DEF ERROR
The FNEND statement is on the same line as a DEF
statement, or an FNEND statement exists which cannot
be matched with a corresponding DEF statement.

SEE ALSO: DISUCSSION: FUNCTIONS (user-functions)
STATEMENT: DEF
STATEMENT: RETURN (CHAPTER K)

- NORTH STAR BASIC - K-14



DATA FILES

DISCUSSION: DATA FILES

Data is stored on diskette in FILES. A file is a
section of storage space on the diskette which is
reserved for data storage use by giving it a FILE
NAME and three other attributes: a LENGTH (or SIZE),
a TYPE, and an INFORMATION DENSITY. You can list
this information for each file on diskette by using
the CAT command. Each CATalog listing is of the
following format:

NAME LOC SIZE TYPE DENSITY TOI

For example, the listing

PROGI 73 20 2 o

,

;

;

denotes a file named "PROGl", starting at sector 73
on the diskette, with a size ot 20 256-byte disk
blocks, and of type 2. The "0" at the end of the
CATalog listing signifies that the information stored
in the "PROGl ll file is stored in double-density
format. If a file is stored in single-density, an
liS" will appear in this position instead. (The "type
dependent information", or TDI, is not shown in this
example. is rarely used, and will not occur in any of
our examples.) All this file information is stored
in a special place on the diskette (the first four
sectors. 0 to 3) called the DIRECTORY.

FILE NAMES

The NAME of a file consists of a series of not more
than 8 pr intable characters. (The "pr intable
characters" include the upper and lower case
alphabets, the digits 0 to 9. and the various
punctuation symbols.) Any characters may be used in
any order, with the exception of the space and the
comma. The space may not be used anywhere within a
file name. The comma may only be used in a specific
situation, which will be discussed in a moment. The
name of a file must be unique on a diskette -- that
is, two or more files may not share the same file
name on the same diskette. For example, only one
file on a diskette may have the name FILEI. However,
it should be noted that the upper and lower case sets
of letters are considered to be separate and distinct
with respect to the names of files, so FILEI and
filel are not the same file name, and may be used to
name different files on the same diskette. A DRIVE
NUMBER SUFFIX may be added to the name of a file to
indicate that the desired file is located on a

- NORTH STAR BASIC - L-I



DATA FILES (Continued)

diskette in a specific drive. which resolves any
possible confusion between files of the same name on
different diskettes. The drive-suffix is formed by
following the name of the file with a comma, and then
a single digit. corresponding to the selected drive.
If, for example, the file "PROG" is on the diskette
in drive #2. the proper way to write its name is
"PROG,2". File "POP" in drive 43 would be called
"POP,3". If no suffix is given, then the system
assumes that the file is on the diskette in drive #1.
The file names "SYNONYM" and "SYNONYM,2" refer to
separate files on different diskettes.

A FILE NAME is an unambiguous reference to a specific
file, and so specifies not only the file's name on
diskette, but also the drive in which it is located.
Thus. a FILE NAME consists of an actual name of no
more than B printable characters plus an optional
drive-suffix (which is assumed to reference drive #1
if omitted). A tile name is a string value.
Statements which require file names as arguments will
accept any string expression. as long as it evaluates
to a legal file name.

FILE SIZES (LENGTHS)

The size of a file is specified in FILE BLOCKs. A
file block is 256 bytes of information. In the
directory CATalog listing. the size of a file is
given in file blocks.

In a double-density system. each file must have an
even number of file blocks. because file space on
diskette is allocated in terms of SECTORS. Two file
blocks will fit in one sector of a double-density
system. In single-density systems, a disk block is
the same as a sector.

Each file in North Star BASIC occupies a contiguous
section of disk storage. A file may be any number of
file blocks in length, provided that there is
sufficient contiguous storage space for it on the
diskette.

FILE ~'YPES

Every file has a type, which can be used to classify
a file according to how it is used. For example, the
North Star convention is that a type 2 file always
holds a program written in BASIC. A file of type 3
is used to store data used by BASIC programs. A type
1 file should contain an executable machine language

,

,

,

,

- NORTH STAR BASIC - L-2



DATA FILES (Continued)

program, such as the BASIC interpreter itself.
These, however, are only 3 of the 128 possible type
designations (from ~ to 127). You are free to use
the others as you wish. to. signify special types of
file contents which are meaningful for you. For
example, you could write a special business program
and arbitrarily declare that all data files relating
to it would be of type 7. Facilities within North
Star BASIC allow you to determine a file's type when
accessing or creating it.

CREAI'ING FILES

A file must be created, and space reserved for it,
before it may be used to store data. The CREATE
statement may be used to create a file of any type or
length, on a diskette in any disk drive. The density
of the file created is set to be the same as the
density of the file directory on the diskette. Once
created, the file's size in file blocks is fixed.
The amount of information in that file can never
exceed the allocated space.

OPENING FILES

Before you can access a data file, you must associate
its file name with a FILE NUMBER using the OPEN
statement. From that point on, use the designated
tile number when referring to the file. For example,
suppose "ACCT" is OPENed as file #:2. Then, all BASIC
statements in your program which are intended to
access "ACCT" should refer to file #2, instead of the
actual file name.

CLOSING FILES

When you are finished using a file, the CLOSE
statement will free the file number associated with
the file so that another file may be OPENed with that
number.

Closing a file also causes any information which is
part of the file but which is temporarily stored in
RAM memory to be written to the file on diskette.

If your program requires manual "swapping" of several
diskettes in and out of one drive, it is essential
that all files on a given diskette be CLOSEd before
it is dismounted from the drive. This is to ensure
that all the latest changes in the files' contents
are actually transferred to the diskette. More
importantly, it ensures that no subsequent WRITE

- NORTH STAR BASIC - L-3



,

DATA FILES (Continued)

activity intended for these files will occur on the
wrong diskette.

TYPES OF DATA ELEMENTS IN FILES

Three types of data may be stored in BASIC data
files: NUMBERS, STRINGS, and separate BYTES. Each
type of item takes up a certain amount of space on
the file when it is stored. Numbers always take up a
fixed amount of space. This space is sufficient to
hold any numeric value. Strings can take up variable
amounts of space, depending upon the current length
of the string when it is written to a file. Separate
byte values require only one byte of disk storage
space to store. Each element of byte information
contains a binary integer value from ~ to 255.

BASIC writes strings and numbers to data files using
a certain well-defined formats. Consequently. it is
easy for BASIC to "recognize" string and numeric data
when a file is READ. Bytes, however. cannot be so
identified. The programmer must always know when
byte data will be encountered during file reading and
writing. If such knowledge is not available to a
file READing program, it may be impossible for that
program to make sense of a file's contents.

DATA ACCESS

READ# AND WRITE#

The two statements which permit input from a file and
output to a file are READt and WRITE#. READ# inputs
data from a file and assigns it to variables as
specified by the programmer. WRITE# overwrites any
previously existing information at a given point in
the file with new information. also as specified by
the programmer. (See STATEMENT: READ# and STATEMENT:
WRITE# for specific details.) READ# and WRITE# may
be used to access string, numeric, or byte-valued
information in SEQUENTIAL or RANDOM fashion. The
rest of this DISCUSSION examines these data-access
methods.

SEQUENTIAL ACCESS

The simplest files consist of sequences of data
values (all string, all numeric, all byte, or
combinations of these). This means that the first
data value is located at the start of the file, and
succeeding values follow immediately afterward, one
after another. BASIC automatically places a special

•

- NORTH STAR BASIC - L-4



I

DATA FILES (Continued)

end-of-file mark (called an ENDMARK) after the last
value in a sequential file. This facilitates later
READing of the file. because the ENDMARK may act as a
signal to the program to quit READing, lest a program
error occur when an attempt is made to READ (or READ
past) the ENDMARK.

A check for the ENDMARK can be made with the built-in
TYP function. TYP, when supplied with the number of
an open file as argument, returns the numeric code
for the type of the next element to be READ from that
file:

TYPE

~

1
2

NEXT VALUE

ENDMARK
string
number

;

,,

Therefore, if the value of TYP(l) is ~, then the end
of file #1 has been reached, and no more READing from
that file should be attempted. The TYP function also
permits a program to know whether to READ a string or
numeric value next, since the types for those data
elements are also returned. This is important,
because a program which tries to READ a numeric value
into a string variable, or a string value into a
numeric variable will generate a TYPE ERROR. With
this in mind. here is a program which READs an
existing sequential data file whose contents include
an unknown sequence of intermixed string and numeric
values, then PRINTs the contents to the console
terminal:

10 REM Report contents of sequential
20 REM data file of unknown structure.
25 REM Assume no string bigger than 50~ chars.
3~ DIM S$ (5~~) .F$ (1~)

40 REM S$ will hold string values read,
50 REM F$ will hold file name, and
6~ REM N will hold numbers read.
7~ INPUT "'fYPE NAME OF FILE TO READ: ".F$
B~ OPEN U.F$
9~ IF TYP(l)=~ THEN 24~

1~0 REM Above is ENDMARK check.
110 IF TYP(1)=2 THEN 190
120 REM Above checks if number is next -
130 REM if not, string is next.
140 REM READ/PRINT string.
150 READ U. S$
160 PRINT S$
170 REM Go back for more data.

- NORTH STAR BASIC - L-5



,

DATA FILES (Continued)

180 GOTO 90
190 REM READ/PRINT number.
200 READ U,N
210 PRINT N
220 REM Get more data.
230 GOTO 90
240 REM No more data.
250 PRINT ,,** END OF FILE **"
260 CLOSE U
270 END

The following sample program WRITEs the numbers 1 to
H'l to existing data file "OAT?", then READs them back.
and PRINTs them on the terminal. Note that, after
writing, the file is CLOSEd and re-QPENed in order to
begin READing at the start, since the last-executed
WRITE statement 1.eaves BASIC "looking" at the
ENDMARK.

10 REM WRITE 10 numbers to file
20 REM and READ them back again.
30 REM First, WRITE 'em!
40 OPEN #1, "DA'r7"
50 FOR 1=1 TO 10
60 WRITE iLl
70 NEXT
80 CLOSE U
90 REM Now, READ and PRINT.
100 OPEN iL "DAT7"
110 IF TYP(1)=0 THEN 170
120 REM Above checks for ENDMARK.
130 READ U,I
140 PRINT I
150 REM Now back for next number.
160 GOTO 110
170 REM Quit.
180 PRINT "** END OF FILE **"
190 CLOSE U
200 END

APPENDING TO SEQUENTIAL FILES.

To add new data to the end of an existing sequential
file, it is necessary to READ to the ENDMARK before
beginning to WRITE. If the sequential file "DAT7 11

already contains the numbers 1 to l~. then the
following program will add the numbers 11 to 20 to
its end.

10 REM Add 11-20 to DAT7 file.
2" OPEN #1,"DAT7"
30 REM Now READ to ENDMARK.

)

- NORTH STAR BASIC - L-6



DATA FILES (Continued)

40
50
60
70
80
90
100
110
120
130
140

IF TYP(1)=0 THEN 70
READ #1.N
GOTO 40
REM Now add the numbers.
FOR 1=11 TO 20

WRITE U, I
NEXT
REM Quit.
PRINT "DONE"
CLOSE U
END

i
•

,,
,
·

;

•

SEQUENTIAL BYTE ACCESS

Files may also be accessed at the byte-oy-byte level
simply by using the ampersand character (&) to prefix
variables into which values will be READ, or to
prefix expressions to be written:

10 REM READ a byte value, then WRITE one.
20 REM Assumes file #1 is OPEN.
30 READ U, &X
40 REM Byte goes into x.
50 WRITE #1.&65
60 REM Byte value 65 goes to file #1.

Only numeric expressions and variables may be given
the &-prefix. Byte values are integers in the range
0-255, and naturally, since BASIC automatically
converts from decimal to binary and back, each
consumes only one byte of file storage space. You
should be sure that any value you intend to WRITE as
a byte to a file lies in the legal byte range.

Note than an ENDMARK will always be written after the
last data item in a WRITE statement, whether or not
that last item is a byte-value. To disable writing
of the ENDMARK, use the NOENDMARK option in your
WRITE statements.

RANDOM DATA ACCESS

BASIC keeps track of where it is supposed to READ and
WRITE next in an open file by maintaining a FILE
POINTER for it. This pointer specifies the number of
bytes from the start of the file to the current
READ/WRITE position. This number is called a RANDOM
FILE ADDRESS. When a file is OPENed. its file
pointer is set to ~, meaning that the first data
access will happen at the start of the file. You can
change the value of the pointer. and so access file
data beginning at any point in a file. This is

,
··

·,

;·
··,•··,,
·:,

- NORTH STAR BASIC - L-7



DATA FILES (Continued)

called "random access" and is one of the quickest
means of storing and retrieving data in files because
it is not necessary to READ all the data items in a
file in order to get to the one you want. By
changing the file pointer to reference the location
of the data-item you seek. you can READ or WRITE it
immediately.

A RANDOM ADDRESS EXPRESSION is added to a READ. or
WRITE# statement in order to access data randomly.
The random address expression is a numeric expression
following a percent sign (for example: %R*5). The
expression must evaluate to an integer from 0 to the
value

SIZE*256-1

where SIZE represents the size of the file in disk
blocks. If an address-expression is ever negative or
greater than the limit given by the above formula, a
program error will occur.

In order to use random access, you must be able to
determine the necessary random address of the
particular piece of data you want. The easiest way
to do this is to require that all items in the file
be of the same type or size. For example, a file
intended for random access might consist of all
numbers, or all 10-character strings. Alternately, a
random access file might contain 100 records of 62
bytes each. Each record might consist of 4 numbers
in a row, plus a string of length 40.

How was the figure of 62 bytes for the record size
computed? In order to find out how much disk storage
space a group of items will require, you must add-up
all the actual sizes of each of the elements. Refer
to APPENDIX 3: IMPLEMENTATION NOTES, for information
on computing the storage-sizes for strings and
numbers.

Knowing exactly how long each element or record is.
you can treat the entire file as a huge array of
items or records, computing the random address of the
Xth item in the file with the following expression:

(X-l)*R

Where R is the size of an individual record or item,
given in bytes. Add a per-cent sign in front of this
expression, and you have a legal random address
expressionl To illustrate, given a file of strings,

- NORTH STAR BASIC - L-8



'",

,,

••

••,
,
·

•·

,
'.,

'.

,

SEE ALSO:

DATA FILES (Continued)

the storage length of each being 42 bytes, then the
first string would occur at address 0, which is (1
1)*42. The 50th string occurs at random address (50
1)*42 = 49*42 = 2058.

Random access records may easily be updated in place,
although you must still use NOENDMARK to avoid the
writing of an ENDMARK after rewriting the record.
(The extra ENDMARK could contaminate the data in the
next record!)

Here is a program which accesses any element of a
random access file of 1000 strings, each of which is
250 characters long:

10 REM Random string access.
20 OPEN #1, "RANDSTR"
30 DIM R$ (250)
40 R=250+2
50 REM R is size of one item -- see
55 REM implementation notes for details.
60 INPU1' "WHICH STRING (1-lB00. 0 TO QUIT)? ".1
70 IF 1=0 THEN 130
80 IF 1<1 OR 1>1000 THEN 60
85 REM Check for out of range item number.
90 READ #1 %(I-l)*R,R$
H'l0 PRINT "STRING #".1,": ",R$
110 PRINT
120 GOTO 60
130 PRINT "QUIT"
140 CLOSE U
150 END

Byte values may also be accessed randomly using these
same techniques. provided that the ampersand is
employed to specify byte access.

STATEMENT: OPEN
STATEMENT: CLOSE
STATEMENT: READ#
STATEMENT: WRITE#
STATEMENT: CREATE
STATEMENT: DESTROY
DISCUSSION: FUNCTIONS (built-in: TYP, FILE)

•··••
- NORTH STAR BASIC - L-9



,

DATA FILES (Continued)

STATEMENT: CREATE <file name>, <file size>
CREATE <file name>, <file size>. <file type)

,,

AC~'ION :

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

A new file of the specified name, size and type
is created On diskette. The file size and (it
present) the file type must be numeric expressions
which evaluate to non-negative integer quantities.
The file size refers to the number of 256-byte blocks
the file will contain and can be no more than the
number of free file blocks remaining at the end of
the diskette. The file type must be no greater than
127. If no type is specified, type 3 (BASIC data
file) is assumed. The file name may be any string
expression whose value constitutes a legal file name
(see DISCUSSION: DATA FILES). The density of the
tile created is set to be the same as the density of
the file directory on the specified diskette.

CREATE "SAMPLE",25
CREATE .tOATA,2" .100 ,10
CREATE F$+D$,S,T

CREATE merely reserves disk space in the directory
under the given file name -- no information of any
kind is actually written into a file when it is
CREATEd.

FILE ERROR
Either the file name is illegal, or there is not
enough room on the diskette to hold a file of the
indicated size.

OUT OF BOUNDS ERROR
The file type specified is not in the range 0 to 127,
or the specified file size is out of legal size
range.

HARD DISK ERROR
See COMMAND: SAVE

DISCUSSION: DATA FILES
STATEMENT: DESTROy
DISCUSSION: FUNCTIONS (built-in: FILE)

- NORTH STAR BASIC - L-10



DATA FILES (Continued)

STATEMENT: DESTROY <file name>
~ ACTION: The file specified by the the file name is removed

from its diskette. The "file name'· may be any string
expression whose value is a legal file name. (See
DISCUSSION: DATA FILES.)

EXAMPLES:

REMARKS:

DESTROY "VIC'£IM"
DESTROY F$+" ,2"
DESTROY "TEMpll+D$(l,l)

The DESTROY statement is equivalent to the DE command
in the DOS.

ERROR
MESSAGES: FILE ERROR

The file name is illegal, or the named file does not
exist.

HARD DISK ERROR
See COMMAND: SAVE

i,,

f,
•
I~

SEE ALSO: DISCUSSION: DATA FILES
STATEMENT: CREATE

- NORTH STAR BASIC - L-ll



r

DATA FILES (Continued)

STATEMENT: OPEN #<file number expression>, <file name>
OPEN #<file no. expr.>, <file name>, <size variable>
OPEN #<file no. expr.) %<type expression>. <file name>
OPEN #<file number expression> %<type expression>,

<file name>, <size variable>

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

The diskette file with the given name is assigned
the specified file number. Until the file is CLOSEd,
it may be referenced by using the file number. The
file number expression must evaluate to an integer
from 0 to 7. If the optional type expression is
omitted, the named file must be of type 3 (BASIC data
file) for the OPEN to be successful. The OPEN will
succeed if and only if the file is of the given type.
The type expression must evaluate to an integer from
o to 127. The file name may be any string expression
and must evaluate to a legal file name as specified
in DISCUSSION: DATA FILES. If the optional size
variable is used, the size of the successfully OPENed
file, given in 256-byte disk blocks, will be assigned
to the specified numeric variable.

OPEN il,"DATA"
OPEN n%4,"CUSTLIST"+D$
OPEN H%T,F$,S

An active file-number must be "freed" by a CLOSE
statement before it may be re-used in a BASIC program
(used again in an OPEN statement).

A RUN, END, SCR, LOAD or CHAIN will close all open
files.

TYPE ERROR
The named file is not of the type specified in the
OPEN statement (type 3, if no type is explicitly
specified) •

FILE ERROR
This is caused by three conditions:
1) The file number is already assigned to a file.
2) The file name has been formed incorrectly.
3) The named file does not exist on the diskette in

the specified drive.

OUT OF BOUNDS ERROR
The file number or type value is out of range.

DISCUSSION: DATA FILES
STATEMENT: CLOSE

•

,

- NORTH STAR BASIC - L-12



•

,

,

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

DATA FILES (Continued)

CLOSE #<file number expression>

Prevents further access to the file with the
specified file number. Also guarantees that RAM
buffer space for the file is written to the file on
diskette if necessary.

CLOSE U
CLOSE iA*2
CLOSE #B7 (3)

Files should be CLOSEd as soon as there is no longer
any need to READ from or WRITE to them. This insures
that any changes made to the files will be permanent,
because the bufter is written out, if necessary, when
a CLOSE occurs.

The "buffer-flushing" action of the CLOSE statement,
where accumulated data is actually written to the
diskette file, will also occur under the following
circumstances:

a) The file pointer is changed to address a byte
location in another file block.

b) An END or CHAIN statement is executed.

c) A STOP statement is executed or a control-C
interruption occurs.

d) The program halts because of a program error.

Only the execution of CLOSE, END, or CHAIN
statements, however, will disassociate the diskette
file from its file number. During an interruption
caused by STOP, control-C. or a program error, any
files OPENed within the program remain OPEN, and may
be accessed in direct mode.

FILE ERROR
The file number expression did not evaluate to an
integer from ~ to 7, or the diskette is write
protected.

,

,

f··
•,

'-'•,
"
••

SEE ALSO: STATEMENT: OPEN
DISCUSSION: DATA FILES

- NORTH STAR BASIC - L-13



DATA FILES (Continued)

STATEMENT: READ t<file number expression>, <variable list>
READ t<file no. expr.> %<random address>, <var. list>

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

For each variable in the list, the next sequential
data value from the specified diskette file is
obtained. and assigned to the variable. READing of
values may commence at a specified point in the file
(x-many BYTE positions from the start) if the random
address is used. The address specification consists
of a per-cent sign (%) followed by a numeric
expression Which evaluates to an integer between 0
and the last legal byte address within the file. The
file number is a numeric expression of integer value
from 0 to 7. Any numeric variable in the list may be
prefixed with an ampersand (&) which instructs BASIC
to READ the next byte of data and assign its decimal
value (interpreted as an integer from 0 to 255) to
the variable.

READ #2, A,H,C
READ #3,Q,&H7,A$
READ *F%L,&X,&Y,&Z
READ #0%FNL(I)+3,R8,Z$,R9

BASIC maintains a "pointer" into each open file.
When the file is OPENed, the pointer is set to the
beginning of the file, this pointing to the first
byte of the first value in the file. Each time a
value is assigned to a variable, the file "pointer"
moves past that value, and points to the first byte
of the next value in the file.

Use of the optional random address expression resets
the file pointer to the specified byte address in the
file, before READing begins.

TYPE ERROR
The types of the variable and the value to be
assigned to it do not match. For example, this will
occur if an attempt is made to READ a string value
into a numeric variable. A TYPE ERROR also occurs
when an attempt is made to READ more data than is
included in the file (READing the ENDMARK). This
error will also occur if use of random-accessing
results in the file pointer being set to, for
example, the "middle" of a string or numeric value in
the file.

OUT OF HOUNDS ERROR
Either or both of the following conditions has
occurred:

- NORTH STAR BASIC - L-14



,
,,
,
j,,,
,

;,
,

'--',,

•,

,,·
•,,,
,

, ,
·,
•··•·,
•

, ,

,
it

'--'

,
•

·•,

SEE ALSO:

DATA FILES (Continued)

1) The random access address is less than 0 or
greater than (the file size in blocks)*256-1.

2) The file number is less than ~ or greater than 7.

DISCUSSION: DATA FILES
STATEMENT: WRITE#

;
•

, ,
•

I··
;

, ;,
I

!,
, ·
,
~

···,
•·,,,
•·•

- NORTH STAR BASIC - L-15



DATA FILES (Continued)

STATEMENT: WRITE #<file number>, <expression list>
WRITE #<file no.) %<random address>, <expr. list>

ACTION:

EXAMPLES:

REMARKS:

Each value in the expression list is written to the
diskette file to which the file number refers. If
there is more than one value in the expression list.
the values are written sequentially (one-after
another) in the order listed. After all the values
in a WRITE statement's expression list have been
written to the specified file, an ENDMARK is written
after the last item. Note that after any WRITE
operation which WRITEs an ENDMARK, the file pointer
will point to the ENDMARK just written. In this way,
new data placed at the end of the tile will overwrite
old ENDMARKs, and the result is that there is always
only one ENDMARK in a file after proper sequential
access. The programmer may opt to suppress the
writing of the END MARK by using the reserved-word
NOENDMARK as the last item in the WRITE statement.
Writing may begin at any arbitrary point in the file
if the random address, an offset (calculated in
bytes) from the start of the file, is included. Both
the file number and the random address may be any
valid numeric expressions, so long as the file number
evaluates to an integer from 0 to 7 (corresponding to
an opened file), and the random address is an integer
between 0 and the last byte address in the file. Any
numeric expression in the expression list may be
prefixed with an ampersand (&) character. This
signals BASIC to convert the value to a single byte
and WRITE it to the file. (Any value so prefixed
must evaluate to an integer from 0 to 255.)

90 WRITE #l,A,B,C$
75 WRITE #F, "HI THERE" ,O,X7 (B) ,NOENDMARK
80 WRITE #0%P,R$
33 WRITE iX, &B1,&B2,&1
20 WRITE #3%Z(M), &E, NO END MARK
30 WRITE #2%(R-1)*S,X$,Y$,Z$

Even when & is used to cause writing of individual
bytes, an ENDMARK is still written after the values
in the expression list. Thus

WRITE #1.&B

will result in the writing of two bytes, the byte
value of B and the ENDMARK. When the intention is to
write only a single byte using a single WRITE
statement, the NOENDMARK option should be exercised.

- NORTH STAR BASIC - L-16

I



•

,,

·•
I,

,
•

ERROR
MESSAGES:

SEE ALSO:

DATA FILES (Continued)

FILE ERROR
The diskette containing the specified file is write
protected.

OUT OF BOUNDS ERROR
Either or both of the following conditions has
occurred:

1) The random access address is less than e or
greater than the file's highest permissible random
address.

2) The file number is not within the range of 0 to 7.

DISCUSSION: DATA FILES
S1'ATEMENT: READ#
STA'rEMENT: OPEN
STATEMENT: CLOSE
APPENDIX 3: IMPLEMENTATION NOTES

,
•
·,
,
•

- NORTH STAR BASIC - L-17



ADVANCED FEATURES

STATEMENT: FILL <memory address>, <byte value>

ACTION: The byte value is placed in the RAM memory cell with
the specified address. A byte value is a numeric
expression which evaluates to an integer from ~ to
255. The memory address must be a numeric expression
equal to an integer from 0 to 65535.

EXAMPLES:

REMARKS:

FILL M+S,0
FILL (2*16T3)+(13*16T2)+(1*16T1l+(3*16T0) ,16
FILL FNC("2D13"),16
FILL 65535,B
FILL 100,31

The FILL statement allows the USer to change
specific bytes in RAM memory, and so is useful in the
following applications (as well as many others):

1) Personalizing BASIC.

2) Loading user-defined machine language routines in
free memory.

3) Putting parameters to machine-language user
functions in free memory.

4) Manipulating video-display memory for custom.
graphics applications.

Note that both the memory address and the byte value
must be in decimal (base l~) form, and BASIC will
convert them to binary when FILL is executed. North
Star BASIC does not accept hexadecimal (base 16)
numbers. If you wish to uSe "hex" when specifying
addresses of byte values, you should make use of a
hex-to-decimal conversion function. Refer to
DISCUSSION: FUNCTIONS for an explanation of user
functions, as well as APPENDIX 1: SAMPLE PROGRAMS for
a user-function written at North Star to perform the
conversion.

If either the byte- or address- values reduce to non
integers, the fractional portion is eliminated
(TRUNCATED) and the remaining whole portion is used.

If, after truncation, the byte value is greater than
255, only it's remainder, when divided by 256 (in
other words, the value modUlo 256) is used. (For
example, 257 modulo 256 =1 -- FILL X, 257 would put a
I-byte in the address represented by X.) No similar
provision is made for the memory address, however.

- NORTH STAR BASIC - M-1



ADVANCED FEATURES (Continued)

CAUTION: FILL may reference an address at which no
memory cell exists or even an address within DOS,
BASIC, or the program/data area. Thus, FILL gives
the programmer power to make some very bad mistakes.

ERROR
MESSAGES: OUT OF BOUNDS ERROR

1) The byte value or the memory address (or both) is
less than zero.

,

,,,

,,

,

,,

SEE ALSO:

2) The memory address is greater than 65535.

DISCUSSION: PERSONALIZING BASIC
DISCUSSION: FUNCTIONS (built-in: EXAM~ user-functions)
DISCUSSION: MACHINE LANGUAGE SUBROUTINES
APPENDIX 1: SAMPLE PROGRAMS

,,,,
,,,

- NORTH STAR BASIC - M-2



,

ADVANCED FEATURES (Continued)

STATEMENT: OUT <port number>, <byte value>

ACTION:

EXAMPLES:

REMARKS:

The byte value is sent to the indicated aese or Z-80
output port. Both port number and byte values must
be numeric expressions which evaluate to integers
from 0 to 255.

OUT 2,65
OUT P,B
OUT P7+l,ASC("0")

Both the port number and the byte value must be
decimal (base 10) numbers. (Refer to STATEMENT: FILL
for further elaboration On this.)

Frequently it is necessary to determine whether or
not a given output port is ready to receive data, by
examining a special input port (called a STATUS PORT)
for evidence of a ready signal. (The buil t-in
function INP may be used to facilitate this.) In
such circumstances, a program should wait until the
ready signal is given before executing an OUT
statement. This process of waiting and OUTing is
called "handshaking". If OUT is used before the
signal is received, the byte value may be lost before
arriving at its proper output destination. The OUT
statement does not provide its own handshaking -- it
is the programmer's responsibility to determine
whether or not handshaking logic is necessary when
communicating with a particular output port, and to
implement it with the appropriate statements if so.

The PRINT and OUT statements do very different things
and should not be confused with each other.

ERROR
MESSAGES: OUT OF BOUNDS ERROR

One or both of the values specified lies outside the
range of ~ to 255.

SEE ALSO: DISCUSSION: FUNCTIONS (built-in: INP)
STATEMENT: FILL

- NORTH STAR BASIC - M-3



~

·

,,
,

,
•

•,

•·,
,,
•

,,

ADVANCED FEATURES (Continued)

DISCUSSION: MACHINE LANGUAGE SUBROUTINES (CALL)

North Star BASIC provides a method through which you
may "link" your BASIC programs to machine language
subroutines which you have written to perform certain
tasks.

A machine language routine must lie outside of the
computer memory area reserved for the DOS, BASIC, and
BASIC's program/data area. (You may restrict this
area, and thus leave room for machine language
routines in high memory, through use of the MEMSET
command, for example.)

Machine language routines are accessed through the
built-in BASIC function named CALL. CALL takes at
least one argument, the numeric address in computer
memory (an integer from 0 to 65535) where your
machine language routine begins. An optional second
argument, also a numeric expression in the above
range, can be communicated to your routine in the D &
E register pair. The value will be truncated to an
integer if it has a fractional part. Negative
arguments are not allowed. All registers may be used
by your machine language routines -- BASIC will have
already preserved any operating information which it
will need later.

When your routine is finished, it should execute a
RET (return) instruction, which will allow BASIC to
resume control and continue with the execution of the
BASIC program. If the machine language routine uses
the stack, then it should use its own stack area.
The stack area and stack pointer used by the BASIC
interpreter should not be modified by the machine
language routine. The number returned as CALL'S
function-value will be the decimal representation of
the contents of the H & L register pair whenever the
machine language routine terminates. Thus, it is
possible to communicate a single numeric value to
your routine from BASIC, and collect a single value
from the routine when it returns.

Here are the models for proper formation of the CALL
function-call:

CALL«address expression»
CALL«address expression>, <argument expression»

For an example of CALL in use, let's suppose there
exists a machine language routine at address 60000,
and that it will require the optional argument value.

- NORTH STAR BASIC - M-4



SEE ALSO:

ADVANCED FEATURES (Continued)

The following line effects a transfer to that
routine, passing the value of variable A as argument ~

in the D & E registers as a positive, 16-bit binary
integer:

10 Q=CALL(60000,A)

If, in this instance, the binary value of 578 is in
the H & L register-pair when the machine language
routine returns, then the variable Q will be set to
578 when BASIC resumes control.

Note that CALL looks like, and acts as a numeric
function. CALL may be a part of any numeric
expression in BASIC, and may be used anywhere any
other numeric function might be used. Note that the
following:

50 CALL(M,A)

is in error -- CALL is not a statement.

Below are some more examples of CALL in use. In one
argument instances of CALL, no specific argument
value is sent to the machine language routine in the
D & E register-pair, however, the CALL function
always returns a value: whatever is in the H & L pair
upon return to BASIC.

200 PRINT CALL(A(3» ,A$
570 X=CALL(R+1024,G)
400 Q(CALL(43025,Y»=M
25 DEF FNM(G,D)=CALL(50000,G*256+D)
1030 F=CALL(S,ASC(S$»

using machine language routines correctly is
difficult and should only be attempted by expreienced
programmers, and only then if no other alternative is
available.

STATEMENT: FILL
STATEMENT: PRINT
DISCUSSION: MULTIPLE I/O DEVICES
DISCUSSION: FUNCTIONS

- NORTH STAR BASIC - M-5



,
•

·,

·,

ADVANCED FEATURES (Continued)

DISCUSSION: CHAINING (AUTOMATIC PROGRAM SEQUENCING)

Through use of the CHAIN statement (discussed in
detail under STATEMENT: CHAIN), one program may cause
another to be automatically LOADed and RUN,
eliminating the need for the user to initiate and
supervise such activities from the keyboard. Thus, a
sequence of programs may operate virtually unattended
for long periods (unless, of course, one or more of
the programs requires interactive data-input or
various diskettes need to be swapped in and out of
the drives). There are two situations when CHAINing
is most effectively used:

1) You desire to use several separate programs as a
complete software "system" where each program can
automatically transfer to another program whenever
necessary.

2) A program may be too large to fit into the
available program/data area, but can be broken up
into separate, self-contained modules which CHAIN
between themselves to accomplish the desired task.

COMMUNICATION BETWEEN CHAINED PROGRAMS

All variables are cleared by a successful CHAIN
operation, so variables which are shared by one or
more modules must be "restored" at the start of each
module.

It is frequently necessary for a CHAINed program to
accept information from the module which precedes it
or pass data to the program to which it will CHAIN.
Several methods may be used to accomplish program-to
program communication. The two most commonly-used
ones are described below.

A data file may be shared between two programs, and
thus provide for communication between them. This
file might be a common data-base (of invoices,
customer names, calendar items, switchboard messages,
etc.), in which case each separate module would infer
the action it should take by examining the current
state of the file. Programs may use files to
communicate in a more direct fashion if actual
variables are shared between them: program A would
WRITE the values of those variables into a file in a
certain order, and then would CHAIN to program B,
which would READ them back in the same order.,

~

···,

The second method for inter-program communication

- NORTH STAR BASIC - M-6



ADVANCED FEATURES (Continued)

involves storing the appropriate data in otherwise
unused RAM memory, outside the program/data area,
where it will survive the SCRatch which is implicit
in a CHAIN. There are a good many techniques for
utilizing RAM memory in this way -- most involve the
use of the EXAM function and the FILL statement.

"TESTING THE WATER" FOR A SAFE CHAIN

If the file specified in a CHAIN statement does not
exist, is not of type 2, or does not hold a valid
BASIC program, the CHAIN operation will fail. It is
not easily possible to check an alleged "program"
stored on diskette to be certain that it is in
perfect condition, but the built-in FILE function may
be used to determine if a given program file exists
and is of type 2 before an attempt is made to CHAIN
to it. Use of the ERRSET statement may also help in
such situations.

SEE ALSO: STATEMENT: CHAIN
DISCUSSION: DATA FILES
STATEMENT: REAU#
STATEMENT: WRITE#
STATEMENT: FILL
DISCUSSION: FUNCTIONS (built in: EXAM, FILE)
STATEMENT: ERRSET
DISCUSSION: ERROR TRAPPING AND RECOVERY

- NORTH STAR BASIC - M-7

!



ADVANCED FEATURES (Continued)

STATEMENT: CHAIN <program file name>

,

ACTION:

EXAMPLES:

REMARKS:

The BASIC program contained in the specified file is
automatically LOADed into the program/data area from
diskette (replacing any current program), then
automatically begins RUNning at the lowest numbered
program line. The program file name must be a string
expression which evaluates to a legal BASIC program
(type 2) file name as described in DISCUSSION: DATA
FILES,

HI CHAIN "PROG,2"
100 CHAIN P$+D$
73 CHAIN "PROG"+N$(X,X)+",2"

CHAIN makes possible the automatic sequencing of 2 or
more programs, freeing the operator from the task of
having to LOAD and RUN each new program as the
previous one ENDs. A CHAIN statement in program A,
for example, may automatically initiate program B: a
CHAIN in B may lead to C, and so on.

After a successful CHAIN, any previous program and
data are cleared. All files currently open in the
calling program are automatically CLOSEd.
Communication between CHAINed programs may be
facilitated by the use of common data files, or by
use of EXAM and FILL.

Because CHAIN is a direct statement, it may be used
instead of the LOAD-RUN sequence for manual program
initiation. However, remember that the file name in
a CHAIN statement is a string expression, and that
string constants must always be enclosed by double
quotes (e.g.: CHAIN "PROG" is legal, but CHAIN PROG
is not).

ERROR
MESSAGES: Same as COMMAND: LOAD

f

,..

SEE ALSO: DISCUSSION: CHAINING
COMMAND: LOAD
COMMAND: RUN

- NORTH STAR BASIC - M-B



ADVANCED FEATURES (Continued)

DISCUSSION: ERROR TRAPPING AND RECOVERY

Normally, when a program error occurs while a BASIC
program is RUNning, BASIC automatically terminates
the execution of the program and issues an error
message. This is to aid -the programmer in finding
and correcting the error. For many possible end-user
applications, a BASIC program should operate in the
presence of errors rather than terminate execution
and print an error message. The program should
detect the error condition, and then take corrective
action without requiring the uSer to debug and re
execute the program. Certain kinds of errors
resulting from incorrect input, improper diskette
handling, or inconsistent data might be too difficult
or time-consuming to anticipate and detect using
regular BASIC statements.

To make convenient ERROR-RECOVERY UNDER PROGRAM
CONTROL possible, North Star BASIC includes the
special ERRSET statement. with this statement, the
programmer specifies a line number which references
the first statement of an ERROR-RECOVERY ROUTINE,
which exists somewhere in the program. Once an
ERRSET has specified the desired error-recovery
routine, any program error which occurs during
program execution will cause an immediate "GOTO" to
that routine. (This is called TRAPPING THE ERROR.)
The BASIC statements in the error-recovery routine
determine the action to take under error conditions.
A good routine will also include statements which
attempt to correct the error condition. For example,
if a user was told to insert a diskette into a drive,
and then the computer detects a hard disk error when
it attempts to open a file on the diskette, either
the diskette has been inserted incorrectly, or the
data on it is invalid. A good error-recovery routine
might give the uSer a chance to re-insert the
diskette.

The programmer must also specify two variable names
in the ERRSET statement along with the line number of
the start of the error-recovery routine, for example:

10 ERRSET 1000,L,E

When an error is trapped, the line number of the
statement where the error occurred is assigned as the
value of the first variable, and a numeric code,
corresponding to the type of the error, is assigned
to the second variable. By examining the value of
these two variables, the program can determine not

- NORTH STAR BASIC - M-9



....

,

SEE ALSO:

ADVANCED FEATURES (Continued)

only what caused the error-condition, but where in
the program it occurred, and with this knowledge,
decide what to do about the error. North Star BASIC
program errors and their codes are listed in APPENDIX
2.

Note that if the error-handling routine in a program
is written to make any decisions based on the number
of the line in which the error occurs, it may be very
unwise to RENumber the program.

When an error-trap occurs, any subroutines, user
functions, and FOR-NEXT loops which were active at
the "trap" are still active. Thus, it is possible to
execute a GOTO statement back to the point where the
error occurred, or to the statement immediately after
that point, and continue the execution of the program
after the error-condition has been handled.

Error-trapping is disabled automatically after each
"trap". After error recovery is complete, another
ERRSET statement can be executed to resume error
trapping mode.

When the program no longer requires the use of
BASIC's error-trapping feature, error-trapping can be
disabled explicitly by executing the ERRSET statement
with no arguments -- for example:

I~~ ERRSET

Unless the control-C program-interruption feature is
disabled (as mentioned in DISCUSSION: CONTROL-C, and
DISCUSSION: PERSONALIZING BASIC) a trappabIe "program
error" will occur every time control-C is pressed
while the program is RUNning in error-trapping mode.
If you do not wish for control-C to be treated as an
"error", then the control-C feature must be disabled.

STATEMENT: ERRSET
APPENDIX 1: SAMPLE PROGRAMS
APPENDIX 2: ERROR MESSAGES

- NORTH STAR BASIC -



ADVANCED FEATURES (Continued)

STATEMENT: ERRSET <line number>, <numeric variable>, <numeric var.>
ERRSET

ACTION:

EXAMPLES:

REMARKS:

Following the execution of an ERRSET statement which
specifies a line number and two variables, the
occurrence of a program error or a control-C (unless
disabled) will cause an automatic GOTO to the
specified line number. The line number where the
error occurred is assigned to the first variable, and
a numeric error code corresponding to the type of

10 ERRSET 1000, L, E
20 ERRSET 570 ,E (0) ,E (1)
30 ERRSET

The use of ERRSET makes possible programs which always
retain control even under error conditions. This is
useful when writing software intended for use by
persons who are unfamiliar with the North Star System
or computers in general. Programs written for such
users may effectively "take care of themselves".

After a trap has occurred or trapping has otherwise
been disabled, another ERRSET statement must be
executed to resume trapping mode.

When trapping is disabled, a program error causes
immediate termination of the program, followed by an
error message printed to the console.

ERRSET may not be used in direct mode -- error
trapping does not function in direct mode. A program
with error trapping enabled will retain that mode
after a STOP interruption, but trapping will not
resume until program execution CONTinues.

Not all errors are trappable with ERRSET. Refer to
APPENDIX 2. Those errors without error codes are not
trapped. Note that it is possible to trap the action
of the control-C panic button as an "error". In
trapping mode, control-C will always cause a
trappable "error" unless the panic-button feature has
been disabled (a process described in DISCUSSION:
PERSONALIZING BASIC).

The subroutine, function, and FOR-NEXT calling
histories of a program remain intact after an error-

- NORTH STAR BASIC - M-11



ADVANCED FEATURES (Continued)

trap occurs, providing the programmer with a chance
to recover from the error, if possible.

ERROR
MESSAGES: Same as STATEMEN~: GOTO.

SEE ALSO: DISCUSSION: ERROR TRAPPING
APPENDIX 2: ERROR MESSAGES
DISCUSSION: PERSONALIZING BASIC
DISCUSSION: CONTROL-C, THE PANIC BUTTON

- NORTH STAR BASIC - M-12



ADVANCED FEATURES (Continued)

DISCUSSION: THE LINE EDITOR

INTRODUCTION TO THE EDITOR

Anyone who has used the North Star BASIC system for
any length of time is already aware of the ~delete

character" function performed by the underline,
RUB/DEL, and backspace keys, as well as the "cancel
line" function of the at-sign (@) key. These are two
features of the larger LINE EDITOR, which allows you
to modify, quickly and efficiently, lines of
information which you type into North Star BASIC.
Mostly, people USe the line editor to change or
correct program text, a line at a time. However, the
editor may also be used on commands and responses to
INPUT or INPUTI statements. Because the program
development aspect of the editor is by far the most
important to the average BASIC user, this purpose
will be emphasized here.

The character-delete and line-cancel functions of the
editor permit instantaneous correction of typing
errors as they are made during the entry of a line.
The editor also allows the correction and
mOdification of program lines which have already been
typed into the system. For example, after SCRatching
the program/data area, type the following PRINT
statement into BASIC:

lB PRINT "TOTAL RECEIPTS TO DATE: ",Tl

As soon as you strike the RETURN, and this line
becomes part of your current program, pretend that
you have made a mistake: the variable to be printed
should actually be T2, not TI. In BASICs without a
line editor facility, you would be forced to retype
the entire line in order to correct the one erroneous
character. However, North Star BASIC always
"remembers" the last line you type to it. This, for
discussion purposes, will be called the OLD LINE. As
a rule of thumb, whenever you strike the RETURN to
terminate a line of input to BASIC, that line
immediately becomes the old line. (There is one
exception to this rule, which will be discussed in a
moment.) Utilizing the higher functions of the line
editor, you can convert the old line into a correct
NEW LINE which will then replace its predecessor in
the program. For now, to prove to yourself that
BASIC indeed "remember s" the old 1 ine, type con trol
G. Notice that the line you just typed reappears.
The cursor or print-head on your terminal will sit
just at the end of the line. By striking control-G

- NORTH STAR BASIC - M-13



ADVANCED FEATURES (Continued)

before typing anything else, you have instructed the
line editor to take the old line from the beginning
to the end, and treat it as a new line of input,
copying the line to the terminal as it does so. In
effect, by using just one control-character, you have
"retyped" the old line. If you now strike RETURN,
the new line will replace line Ie -- but since the
new line is identical to the old, no net improvement
will result: Tl should still be changed to T2.
However, suppOSe you strike the underline key. Now,
the last character in the new line (the 1 that should
be a 2) is erased, and you may type the correct one.
If you strike RETURN at this point, the correct line
will replace its faulty predecessor. To correct the
reasonably long line 10, all that was required was to
strike four keys: control-G, underline, the "2" key,
and RETURN.

(When one is used to such a procedure, it is much
faster and less tedious than retyping the whole line,
although, for this introductory example, you probably
spent more time being careful, reading directions,
and observing results, than you would if you had just
retyped the whole thing to start with. Practice with
the editor -- your speed will improve tremendously.
Even after just an hour or so of experience with the
editor, you will note a gratifying increase in your
efficiency when entering and modifying BASIC
programs. )

NOW, try another example. Realize that, as soon as
you strike the RETURN key to end the new line, it
became the old line, and you may now use the editor
on it. Type

I

I
20

(and don't strike RETURNI).
You should see the following

Now strike control-G.
on your terminal.

I,

20 PRINT "TOTAL RECEIPTS TO DATE, ",T2

If you strike RETURN, a new line 20 will be added to
your current program. Its contents will be identical
to the contents of line 10. What you have done is
create a completely new line by combining newly-typed
information with part of the old line. When you
typed the line number 20, you were typing over the
first two characters of the old line. When you
pressed control-G, the line editor knew to copy only
the remaining part of the old line to the new line.
The first two characters of the old line were

·•• - NORTH STAR BASIC - M-14



ADVANCED FEATURES (Continued)

discarded in favor of your new information. Suppose
that there had been no third character in the old ,-""
line -- that it was only, say, one or two characters
long itself. Then, there would have been nothing for
the control-G function to copy to the new line. In
this case, as in others where the editor cannot
comply with your wishes, it rings the bell (or beeps
the beeper) on your terminal.

THE EDIT COMMAND

So far, all that has been shown is only how the most
recently typed line may be modified or used to create
a new line. What if, after typing line 20 in the
example above, you want to go back and modify line 10
again? This time, line 20 would be the old line
-- not line 10. The editor would still want to work
with line 20. To surmount this problem, you can
force BASIC to treat line 10 as the old line, by
using the EDIT command as follows:

EDIT 10

This forces the line editor to replace the "natural"
(most recently typed) old line with the program line
you specify. In this example, line 10 would become
the old line. (Note that, if you type in other
commands besides EDIT, the command line itself
becomes the old line. The EDIT command, however, is
the one exception to the "rule of thumb" mentioned
earlier. When you strike RETURN after typing the
EDIT command, the command line is discarded, and the
program line specified becomes the old line instead.)

Notice that there is no obvious response to the EDIT
command -- the cursor or print-head simply moves to
the start of the next line. However, if you strike
control-G, you will see that line 10 has indeed
become the old line, since it is immediately printed
on the terminal. Using the EDIT command, you can
force any program line to be the old line, and thus
you can modify any part of your program, or create
totally new lines by taking information from a
"forced" old line, and combining it, under a new line
number, with newly-typed information. The following
discusses all the special functions of the line
editor, as well as some theory behind the editor's
operation.

LINE EDITOR SPECIFICS AND FUNCTIONS

Assume that you have just strike RETURN to enter the

- NORTH STAR BASIC - M-lS



,
•,

,,

,,

ADVANCED FEATURES (Continued)

above line 10 into your program. Line 10 is now the
old line. BASIC is waiting for you to type (or use
editor commands to help form) a new line. At this
stage, the old line is stored in BASIC's memory, and
two "pointers" are kept: one to the current
character position in the old line (the OL pointer) ,
and the other to the current character position in
the new line being typed (the NL pointer). Before
you start typing the new line, both these pointers
are set at the starts of their respective lines. (It
is obvious that the new line pointer is set to the
start of the new line, since you haven't typed
anything new yet!) Most of the editor functions are
most completely explained with reference to these
dual pointers.

Typing a normal character (not a control-character
editing command) in the absence of any other editing
function will result in both pointers being advanced
one position. The typed character is added to the
new line, and the old line pointer now points to the
next character in the old line. In the sequence
above, for example, when you typed 2e to start the
new program line, the NL pointer ended up pointing
just beyond the e in 2e, while the aL pointer was
skipped past the Ie in the old line, and pointed at
the space just beyond the line number.

,·
··

BEFORE:
(old line)

(new line)

AFTER:
(old line)

10 PRINT etc ....
T OL pointer

T NL pointer -- next char typed goes here

Ie PRINT etc ••••
l aL pointer

(new line) 20
T NL pointer -- next char goes here

Here are the editing functions, along with the
control-character commands which invoke them:

control-G: COPY REST OF OLD LINE TO END OF NEW LINE
Copy all the characters from the aL pointer character
position through the end of the old line over to the
new line, starting at the NL pointer character
position. If the aL pointer already points past the
end of the old line, no characters will be copied,
and the bell will ring.

- NORTH STAR BASIC - M-16



ADVANCED FEATURES (Continued)

Control-A: COpy ONE CHARACTER FROM OLD LINE
The character in the old line pointed to by the OL ~

pointer is copied to the new line at the character
position designated by the NL pointer. As a result,
both pointers will be advanced by one position. If
there is no character to copy, the bell rings.
Repeated use of the control-A command will eventually
give the same result as one control-G command.

Control-Q: BACK-UP ONE CHARACTER
This erases the last character of the new line, and
decrements both the OL and NL pointers by one. If
either pointer is already pointing to the beginning
of its line, the bell is rung. An underline is
printed on the terminal to denote the erasure of a
single character. Typing the underline, DEL/RUB, or
backspace (control-H) keys will also give the same
result as control-Q.

Control-Z: ERASE ONE CHARACTER FROM OLD LINE
This command advances the OL pointer by one position,
without copying anything to the new line or advancing
the NL pointer. This effectively "erases" the
skipped character from the old line so that it cannot
be copied to the new line. A per cent sign (%) is
printed to the terminal to indicate the action of
this command. If the OL pointer is already at the
end of the old line, then the command is rejected and
the bell is rung.

Control-D: COpy UP TO SPECIFIED CHARACTER
A second character (called the SEARCH CHARACTER) must
be typed before this command is executed. The result
is that the contents of the old line from the current
OL pointer position will be copied to the new line
(starting at the NL pointer position) up to (but not
inclUding) the first old-line occurrence of the
search character. If the search character cannot be
found in the old line, no characters are copied to
the new line, and the bell is rung. For example, try
typing

19 PRINT "HERE IS A TEST LINE"

to BASIC, striking RETURN afterwards so that it
becomes the old line. Now, strike control-n and then
capital-So Notice that neither the control character
nor the letter S appear on the terminal, but the
following is seen instead:

19 PRINT "HERE I

- NORTH STAR BASIC - M-17



ADVANCED FEATURES (Continued)

The old line has been copied to the new line up to
(but not including) the first instance of capital-S
in the old line. (To copy over the rest of the line,
of course, use control-G.)

Control-Y: SWITCH SPECIAL INSERT MODE ON AND OFF.
If insert mode is on, control-Y will turn it off, and
if it is off, the same command will turn it on.
Insert mode starts out by being "off" at the
beginning of every new line. When insert mode is
off, typing normal (non-control) characters advances
the OL as well as the NL pointer (so that the new
material may ntype over the old linen). When insert
mode is on, however, typing normal characters will
not advance the OL pointer (although the NL pointer
is necessarily advanced). The result of all this is
that insert mode may be used to insert some new
material in the middle of the old line. (An example
will be given in a moment.) When insert mode goes
on, a left angle-bracket «) appears on the terminal.
When it goes off, a right angle-bracket (» is
printed. (Note that these characters do not become
part of the new line itself -- they are printed on
the terminal only to signal to you the current status
of insert mode.) While normal typing will not
advance the OL pointer during insert mode, editing
commands which are supposed to change the value of
the OL pointer will continue to do so. For example,
typing control-G during insert mode will still copy
the rest of the old line over to the new line and
advance the OL pointer to the end of the old line.
To get the feel of insert mode, and the on-off action
of control-Y, set up an old line by typing the
following:

10 PRINT "TEST LINE"

Now, use the control-D command twice, to "speed" you
to a point just after the quote-mark at the beginning
of the string literal. (To accomplish this, strike
four keys: control-D, T, control-D again, and T
again.) Here is what you should see on the terminal:

10 PRINT "

Now, strike control-Y, which gives you this:

10 PRINT "<

Type the words

HERE IS A

- NORTH STAR BASIC - M-18



ADVANCED FEATURES (Continued)

and then a space. Then strike control-Y again. The
terminal should now look like:

l~ PRINT "(HERE IS A >

By going into insert mode temporarily, you avoided
typing over and so obliterating any part of the old
line. So, if you now strike contro!-G, everything
which came after the first quote in the old line will
be copied to the new line:

l~ PRINT "(HERE IS A >TEST LINE"

If you strike RETURN at this point, the new line Ie
will replace the old, and the net effect will be that
the new material will have been inserted between the
first quote-mark and the subsequent T of the old. To
see this net effect, strike control-G again and
follow it with a RETURN.

Control-No CANCEL AND RE-EDIT NEW LINE
This command cancels the partially-completed new line
and permits another new-line to be entered. The
canceled new line becomes the old line for sUbsequent
editing. An at-sign (@) is printed and advancement
to the next terminal line occurs when this command is
typed. The at-sign itself may be typed instead of
control-N to achieve the same results. After the
cancel is executed, both OL and NL pointers are reset
to the start of their respective lines.

SEE ALSO: DISCUSSION: COMMUNICATING WITH BASIC

- NORTH STAR BASIC - M-19



r;;,,,

,
,,,,

,,

COMPATIBILITY

DISCUSSION: OOMPATIBILITY WITH OTHER BASICS

This section provides some information which may be
useful to you if you are attempting to convert
programs into North Star BASIC from other versions of
BASIC.

Sl'RING HANDLING

The operations and functions used to access strings
and substrings often differ widely between different
versions of the BASIC language. DISCUSSION: USING
STRINGS details the system implemented in North Star
BASIC, where sUbstring access is achieved through
string-name sUbscripting. However, some BASIC
systems use the so-called "MID-LEl"T-RIGH'r"
convention, where access to substrings is made
possible by the three built-in string functions MID$,
LEFT$, and RIGHT$. Programs which use this method of
sUbstring access will have to be modified to reflect
North Star string conventions. In general:

OTHER BASICS

LEFT$ (X$ •L)
RIGHT$ (X$ ,R)
MID$ (X$ ,L .N)

STRING TABLES

is the same as
is the same as
is the same as

NORTH Sl'AR BASIC

X$(I,L)
X$(LEN(X$)-R+l)

X$(L.L+N-1)

,
•

,,,

Some versions of BASIC implement arrays of strings
with the syntax which is used for sUbstring
referencing in North Star BASIC. An array of strings
may be achieved in North Star BASIC by partitioning a
string variable into fixed-length sUbstrings. For
example, an array of N strings, each of maximum
length L would be DIMensioned as:

10 DIM A$ (N*L)

and the Jth string element (where J extends from 0 to
N-l) would be accessed using:

A$(J*L+1,(J+1)*L)

STRING DECLARATIONS

In North Star BASIC, all strings longer than l~

characters must be explicitly declared in a program's
DIMension statements. Strings may be dimensioned to
any length desired, to the limit of available
computer memory. Some other BASICs do not require

- NORTH STAR BASIC - N-1



COMPATIBILITY (Continued)

that string variables be dimensioned before use~ but
may set a small upper limit on the maximum length of '~

strings which may be used in a program.

INPUT TRANSLATION

Certain characters, when they are typed into North
Star BASIC, are automatically translated into other
characters. This is done to help minimize the effort
of converting programs written for other BASIC
systems into North Star BASIC. This conversion is
not performed upon text within quoted strings. The
following chart summarizes the translation process.

[
J

(colon)
(semi-colon)

becomes
becomes
becomes
becomes

(
)

\ (backslash)
(comma)

Thus, the line input as

10 PRIN'r A$[3,4], : LET A$[3,4j="HI"

becomes

10 PRINT A$(3,4), \ LET A$(3,4)="HI"

NORTH STAR'S BCD ARITHMETIC

North Star BASIC uses the BCD (binary coded decimal)
system for implementing floating-point arithmetic (as
opposed to binary integer arithmetic in some BASICs,
and straight binary floating methods in others.)

Within the limits of its precision (a-digits in the
standard version), North Star BASIC's BCD method is
the most accurate method of arithmetic computation
available on microcomputers today. Other floating
point arithmetic methods exhibit "binary-conversion
error" which introduces strange and sometimes
frustrating inaccuracies into numeric computations
because of an internal conversion of numbers from
decimal (base 10) to binary (base 2).

It is impossible, using straight binary methods, to
represent with complete accuracy many common and
precise decimal fractions, such as .l! You might
assume that 10*.1 = 1. Using North Star's accurate
BCD arithmetic, it always does. However, under other
methods, le*.l frequently does not equal exactly l!

- NORTH STAR BASIC - N-2



COMPATIBILITY (Continued)

IF ••• THEN EVALUATION

Other BASICs handle the results of IF ••. THEN
evaluation differently than North Star BASIC when the
IF statement precedes others on a mUltiple-statement
program line. In North Star BASIC, when the IF
condition is FALSE, the THEN part is skipped and
execution continues with the following statement in
the program text. The "following" statement may come
after the IF statement on the same program line, or,
when the IF is at the end of a program line, the
first statement on the next line is used as the
"following" statement. Thus, the program:

10 A=0
20 B=0
30 IF A<>0 THEN A=7 \ B=7
40 PRINT B

will yield

7

as output. In contrast, other BASICs may ignore the
rest of line 20 when the IF condition is found to be
FALSE, and will skip ahead to the following program
line, bypassing the assignment to B in line 30 so
that the output becomes:

With these other BASICs, execution always skips to
the following program line when the condition in an
IF statement is fALSE. The remainder of the line, if
any, is executed only when the condition evaluates to
TRUE.

- NORTH STAR BASIC - N-3



MISCELLANEOUS TOPICS

DISCUSSION: SPECIAL ENTRY POINTS

NOTE: The following discussion COncerns advanced
topics and presupposes a working knowledge of the
North Star DOS and a grasp of memory addressing in
hexadecimal (base 16) notation. Please be sure that
you are familiar with these topics before reading
further in this section.

The following is a list of BASIC's entry points, and
the results of re-entry to BASIC via each. (The
abbreviation ORG stands for the starting address of
your BASIC -- for those whose BASIC starts at 2D00H,
the actual entry point addresses are given in
parentheses next to the general models.)

ORG + 00H (2D00H)
BASIC is initialized. An automatic SCRatch of the
program/data area is performed, erasing any BASIC
program and/or data which might have existed in
that area of RAM. Note that this is the entry
point used by the GO BASIC command in the DOS.

ORG + 04H (2D04H)
Any previously existing program is retained, but
any variables and/or other data associated with it
are erased.

ORG + 14H (2D14H)
The BASIC system resumes, with all program, data,
and program execution history left intact. Thus,
you may interrupt a BASIC program with control-C,
exit BASIC with BYE, use the DOS, re-enter BASIC
at ORG + l4H, and USe the CONT command to resume
BASIC program execution exactly where it left off.
(This assumes, of course, that your use of the DOS
causes no change in BASIC's memory region.)

SEE ALSO: DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - 0-1



MISCELLANEOUS TOPICS (Continued)

DISCUSSION: PERSONALIZING BASIC

You may change certain of BASIC'S internal features
so that system operation is more convenient for you
and/or better fits your particular computer's
capabilities. For example, the limits of the memory
area used by BASIC may be enlarged or constricted,
leaving more or less space for user programs and
data. These changes are accomplished through the
modification of information stored in various memory
locations within the BASIC interpreter itself.

In general, modifications of these "personalization
bytes" are best handled through use of BASIC's FILL
statement, and, occasionally, the built-in EXAM
function. What follows is a complete, step-by-step
procedure which you may use to "personalize" BASIC in
your computer system. If you want the changes made
to be permanent, be sure to follow ALL of the steps
(from A to E). If you want only temporary
modification, which will endure until the end of the
current session of BASIC, then do only step C,
omitting all the rest.

A. Test your system's memory by using the MONITOR
memory-test function to be sure that you will not
be making a copy of BASIC from bad memory. In
particular, the area where BASIC and DOS reside
should be tested thoroughly.

B. At this point, you should make sure that the DOS
is operational, and that you are in its COMMAND ~

mode (signified by the DOS prompt). Now, put your
write-protected, original system software diskette
(supplied by North Star) in drive II and then type

GO BASIC<CR>

When BASIC responds with READY, go to step C.

C. NOw you are ready to make the various
modifications to BASIC. In order to do so, follow
the sub-steps here in exactly the order given. If
you do not wish to make one or more of the
individual changes listed, then simply skip it,
but DON'T MIX UP THE ORDER OF THE STEPS! In any
case, you must always do step '2 before attempting
any higher-numbered steps.

1. MEP;1QRX 51 ZE
In~tially, the standard v~rsion of BASIC
doesn't leave much room for your BASIC

- NORTH STAR BASIC - 0-2



MISCELLANEOUS TOPICS (Continued)

program/data area -- BASIC is made to "assume"
that you have only 16,384 bytes of working
memory. The DOS and BASIC itself take up most
of this. In order for you to write and RUN
reasonably large programs, you must have more
memory beyond the 16,384-byte (16K) limit.
Moreover, you must inform BASIC of the extra
memory availability using the MEMSET command.
See COMMAND: MEMSET for detailed information on
the use of this command. You may use MEMSET to
enlarge or shrink the program/data area that
BASIC is allowed to use. Simply determine the
address (in decimal) of the highest memory-cell
you want BASIC to be able to use, and employ
that number as the argument to the MEMSET
command. For example, if your memory extends
all the way to 48K (49151 in decimal) and you
want BASIC to USe all that's available there,
type

MEMSE'!' 49151--
(The argument to MEMSET is, among other things,
translated to binary, and put into bytes
ORG+09H and ORG+10H, where "ORG" is BASIC's
ORIGIN (starting address) in your system,
ususally 2D00H. In the standard version of
BASIC, then, these addresses are 2D09H and
2D0AH, respectively. The standard default
high-address for the program/data area is
5FFFH. )

description of the
LINE LENGTH
See STATEMENT: LINE for a

S=11520

2. SETTING A VARIABLE TO BASIC'S ORIGIN
lor many of the following steps, the FILL
statement is used to modify memory locations
within BASIC. In the examples to be given
here, it will be assumed that the numeric
variable S has been set to the decimal number
corresponding to the address in memory where
your copy of BASIC starts. If you have a
version of BASIC which starts at "2D00" in
hexadecimal, then USe 11520 for BASIC's origin.
Otherwise, if your BASIC starts someWhere else,
determine the decimal (base 10) equivalent of
the origin, and use that number. Set S in a
direct-mode assignment statement. For example,
for standard versions of BASIC, type1(1 ff"

C I J \1r C
•

3 •

- NORTH STAR BASIC - 0-3



;,

,,

,
,

,,,,

,

,

,,
.~,

,·,,
,,·,
·,
·,,
,,,
··,···,

·,,
··,,

MISCELLANEOUS TOPICS (Continued)

significance of the input/output line length in
BASIC. The standard version assumes that the
console terminal has a line-width of 80
characters. If the actual per-line capacity of
your terminal is smaller or larger than this,
set variable L to the appropriate line length
for your terminal. If that is 64, for
instance, then type

L=64

Once L is set, then type

FILL 5+14, L

4. VIDEO PAGING
If you have a video (CRT) terminal, it is
desirable for BASIC to send only one "screen
page" at a time when providing a program
LISTing to you on the video screen, and then
wait for you to "ask" for the next page. If
you have a printing terminal, which gives you
output on paper, you won't need paging. Set
variable p to the appropriate value for your
terminal. For hardcopy (printing) terminals,
where you don't want paging, type

and for video screens, set P to the number of
lines which your screen can display at one
time. The standard version of BASIC assumes
that your terminal has a video screen capable
of showing 24 lines at a time. If this is so,
then you don't need to make any modification at
all, and may skip this step. Otherwise, once
the appropriate value of P is set, type

FILL 5+19, p

(Note that, if you direct BASIC to page its
LISTings, it will give you P-l lines of
program, then, at the bottom of the screen, at
the Pth line, it will PRINT

PRESS RETURN TO CONTINUE

To get another page of LISTing, strike the
RETURN key. If YOU'd like to terminate the
LISTing at this point, press control-C.)

i

"
- NORTH STAR BASIC - 0-4



MISCELLANEOUS TOPICS (Continued)

5. "BACKSPACE" CHARACTER
In the standard, unmodified version of BASIC,
when you press the underline, control-Q,
backspace (control-H), or RUB/DEL key to delete
the last character typed, BASIC types an
underline (ASCII character 95) back at you to
confirm the deletion. It is possible to change
this ··deletion confirmation" character to any
other one you wish. Set variable D to the
decimal ASCII value of the desired character.
(If you don't know its ASCII value, use the
table provided in APPENDIX 4.) For example,
the ASCII value of the backspace character is
8, so to set D appropriately, type

D=8

Then, having set 0, type

FILL 5+23, D

Changing the Ildeletion confirmation" character
to backspace is most useful when your terminal
is a standard CRT model. However, not all use
ASCII-8 as a backspace -- consult the manual
for your specific terminal or video screen in
order to get the exact character which causes
backspacing on it.

6. CONTROL-C INHIBIT
For some applications, you may wish to keep the
user from being able to interrupt a program by
striking (whether accidentally or on purpose)
the control-C "PANIC BUTTON". If, for any
reason you wish to disable the control-C
feature, make sure that 8 is set to the
starting address of your BASIC and type

FILL 8+24, 1

To re-enable the feature, type

FILL S+24, 0

The standard copy of BASIC assumes that
control-C interruptions are allowed. Note that
control-C can be turned on and off during the
execution of a program, if desired, using these
same methods.

- NORTH STAR BASIC - 0-5



,,,,
MISCELLANEOUS TOPICS (Continued)

,
7.

• ~,
•

,,,
,

,
·,,
•,,
•,,
,
•·
•·

NON-STANDARD BOOTSTRAP PROM
If your system uses a non-standard bootstrap
disk-controller PROM, then you must convert the
first two digits of the 4-digit hexadecimal
address for your special PROM into decimal,
then assign that value to a variable, say B.
For example, if your PROM starts at FC00H, you
would take the two-digit hex number Fe and
convert it to its decimal equivalent, 252.
(You may use the table in APPENDIX 4 for this
conversion.) Then, you would type

B=252

Once B has been set properly, type

FILL S+16, B

Note that if you have a non-standard PROM and
fail to make this modification, the RND
function will not work properly when given a
negative argument.

8. SHRINKING BASIC
There are many applications which do not use
the special mathematical functions SIN, COS,
ATN, LOG, and EXP, but do require as much free
memory as they can get! To release extra
memory into the program/data area, you can
"chop" these functions out of BASIC by
performing the modification described here.
First, as you look at the table below, realize
that these functions must be removed starting
at ATN and continuing up through the function
you select (which might itself be ATN, meaning
a deletion of only one function). It is
impossible, for instance, to remove the LOG
function but keep SIN and COS. If you choose
to remove through LOG, then SIN, COS, and ATN
will also be erased. Bearing this in mind, you
can indicate your choice by setting variable C
to a specific value, as shown in this table:

;,,
•,,
,,

•
; .~

,,,,
····
·,
·•,
;
·,
,·,
,·,
;,

•,

,,··,··
;,

to remove functions
from ATN through •••

ATN
SIN-COS
LOG
EXP

set C to

1
2
3
4

To illustrate, suppose you wish to eradicate

·•,,·•,
- NORTH STAR BASIC - 0-6



MISCELLANEOUS TOPICS (Continued)

all of the listed functions. Then you should
type

C=4

When C is set to the desired value, then type

FILL S+6, EXAM(S+24+(C*2)-1)
FILL S+7, EXAM(S+24+(C*2»

Note that, after this modification has been
made, any attempt to use the erased functions
will lead to a system crash. (The
exponentiation operator, T, makes frequent use
of the EXP function, so if you delete EXP,
don't use T, either.)

9. PERSONALIZING FPB-BASIC FOR DIFFERENT FLOATING
POINT BOARD ADDRESSES

Note: Skip this section unless you are
personalizing a version of FPB-BASIC.

The North Star Hardware Floating Point Board
(FPB-A) is accessed like computer memory, and
has a set of addresses as does a memory board.
All the FPB-A addresses have the same high
byte: 239 (EFH) for the standard board. The
North Star FPB-A manual tells how to change the
high byte, in order to re-address the board.
If you find it necessary to re-address your
FPB-A, you will also have to personalize BASIC
so that it will use the board at the new set of
addresses. The following procedure should be
done BEFORE you actually change the addresses
of the board itself:

Simply determine what the decimal equivalent of
the board's new high byte is, and set variable
F to it. (You may find APPENDIX 4 useful in
performing any necessary conversion from
hexadecimal to decimal.) To illustrate, assume
you wish to change the high byte from 239 (EFH)
to 223 (DFH). Then type

F=223

When F has been assigned the decimal value of
the board's new high byte, type

FILL S+33, F

'---.

- NORTH STAR BASIC - 0-7



,,
;

,,,

,
,·,·
·,
,
•
•
I

;

,
••
,,,

,, "-',
;·,,,
;
;·,
,,
;·,·,,,
;-,
,,

·,
;

•,
·,,

MISCELLANEOUS TOPICS (Continued)

Now, having finished all personalization, use
the methods described in this DISCUSSION to
save a copy of your new FPB-BASIC on diskette.
Shut down the computer system and change the
board's addresses. When you re-activate and
re-boot the system, execute the new copy of
FPB-BASIC. From now on, every time 'this new
copy of FPB-BASIC is executed, it will "re
personalize" itself to use the FPB-A board at
the new address. Older copies of FPB-BASIC,
which have not been modified in the above
fashion, will fail to work with the re
addressed FPB-A.

D. Type BYE in order to return to the DOS. Mount an
initialized diskette, for example, a diskette
which contains only a personalized copy of DOS
(not your original, write-protected diskette), in
drive #1, and perform the following DOS commands:

CR BASIC <size of BASIC file on master disk>
TY BASIC 1 <origin in hex of your BASIC>
SF BASIC <origin in hex of BASIC>

If you have the standard version of BASIC, then
the above simplifies to the following actual
commands:

CR BASIC 52
TY BASIC I 2000
SF BASIC 2000

E. Now type

GO BASIC

to test your personalized copy and make sure that
all the modifications have been made correctly.
If not, get back into DOS and return to step A.
The new copy of BASIC may now be used as your
"personalized" master copy, and the disk
containing it should be write-protected for this
reason. Then, when you need another copy of this
personalized BASIC, you need only copy it to
another diskette.

TURNKEY STARTUP OF BASIC

Using methods similar to the personalization process
above, you can configure a copy of BASIC so that a
BASIC program begins automatically as soon as BASIC

;

- NORTH STAR BASIC - 0-8



MISCELLANEOUS TOPICS (Continued)

itself is II Up and running". This is especially
desirable when you want to create an "automatic"
software system intended for use by persons who are
unfamiliar with BASIC or DOS operation.

HOW TO CREATE A TURNKEY VERSION OF BASIC,

I} Mount a diskette with a copy of BASIC on it in
drive U. Type

GO BASIC

2) If you desire different IIpersonalization" than
that already existing in this copy of BASIC, go
through the personalization procedure described in
step C (above).

3) Enter or LOAD the desired BASIC program into the
system.

4) Repeat substep 2 of Personalization Step C to set
S to the starting address of BASIC.

5) Type

PSIZE

Add the number printed to the size of the BASIC
interpreter itself. (This is the filesize of
BASIC as listed in the diskette directory. Assume
50 for now.) Set variable X to the number you
get. If the PSIZE is 20, for example, add 50 to
get 70, then type

X=70

6) Set string variable F$ to the name you wish to
give to this turnkey system. If, for instance,
the " au tomatic" BASIC program is named "SALES",
then you might want to call the turnkey system
"SALESBAS". Then, type

F$="SALESBAS II

and go on.

7) Mount a diskette with enough room on it to hold a
file of size X in drive #1. Then type

CREATE F$,X

I
•

- NORTH STAR BASIC - 0-9



MISCELLANEOUS TOPICS (Continued)

8) Type

FILL S+15, 0

,,,
and finally type BYE, which will put you back in
the DOS. In the DOS, you will need to save the
turnkey system on the file you have created, and
must specify BASIC;s starting address by using the
TY (TYpe) command. Here are two models for what
you must type in the DOS:

SF <name of file> <BASIC;s origin>
TY <name of file> 1 <BASIC;s origin>

taken as an example, you might

"Wi
SALESBAS~

SALESBAS 1 2D00

If "SALESBAS II is
type

SF
TY

9) Now type

GO <file name>

to test the new version of BASIC. In the example
here, you would type:

GO SALESBAS

Your BASIC program should start up without the
need for a LOAD, RUN, or CHAIN.

A CHART FOR READY-REFERENCE

The following chart contains summary information
about each of the "personalization bytes" discussed
in this section. The addresses are given relative to
the start of BASIC (the "ORG +" form), and, for those
whose BASIC starts at 11520 (2D00H), the actual
addresses in decimal and hex are also given.

ORG+6 & ORG+7 (11526 & 11527 or 2D06 & 2D07) [ENDBAS]
These two locations contain the low and high bytes,
respectively, of the last address taken up by the
BASIC interpreter itself, and may be modified to
contain a lower address in order to "shrink" BASIC.

•
>

ORG+9 & ORG+10 (11529-11530 or 2D09H-2D0AH) [HIGHMEM]
Contains lower and upper bytes, respectively, of
highest address in RAM which BASIC may use for
program/data area. Standard value: 255 and 95
respectively (corresponding to 5FFFH).

- NORTH STAR BASIC - 0-10



MISCELLANEOUS TOPICS (Continued)

ORG+14 (11534 or 200EH) [LINE]
Initial line length. Standard value: 80 ~

ORG+15 (11535 or 200FH) [AUTOS]
Controls turnkey auto-start. Zero-byte means auto
start engaged. Standard value: 1 (no turnkey
operation) .

ORG+16 (11536 or 2010H)
Corresponds to first two
address for your system.

[BOOTPROM]
hex-digits in bootstrap PROM

Standard value: 224 (E8B)

ORG+19 (11539 or 2D13H) [PAGES]
Controls paging-mode for program LISTings. If paging
is desired, this should contain the number of lines
in a terminal "page". A zero-value means no paging
will occur. Standard value: 24

ORG+23 (11543 or 2D17H) [DELECHO]
Character to be "echoed" in response to a single
character deletion. Standard value: 95 (corresponds
to underline character).

ORG+24 (11544 or 2D1BH) [PANICOK]
Controls use of control-C for BASIC program
interruption. If this byte is 0, control-C causes
interruptions. When the value is non-zero, control-C
interruptions are disabled. Standard value: 0

ORG+33 (11553 or 2021H) [FPBADDR]
Specifies the high-order byte of the floating point
board addresses. This byte is present only in
hardware floating point versions of BASIC.

- NORTH STAR BASIC - 0-11



·, .

I',

, ., .
I.
I ;

,

,
·,,,,
..,

MISCELLANEOUS TOPICS (Continued)

DISCUSSION: NON-STANDARD VERSIONS OF BASIC

NOTE: This discussion assumes some sophistication on
the part of the reader, particularly an understanding
of the term "precision" and how it relates to numbers
and arithmetic in BASIC. A knowledge of computer
memory addressing and the hexadecimal numbering
system is also helpful. Readers unfamiliar with
these topics should study other sections in this
manual, namely DISCUSSION: USING NUMBERS and APPENDIX
4: DECIMAL-HEXADECIMAL-BINARY-ASCII CONVERSION
TABLE.

ABOUT NON-STANDARD VERSIONS OF BASIC

The standard version of BASIC begins at address 1152~

(2D00H) in memory, provides B digits of arithmetic
precision in its representation of numbers, and does
arithmetic with the help of special software routines
written directly into the BASIC interpreter itself.
BASIC is available, however, beginning at other
addresses in memory. (From now on, the starting
address of your copy of BASIC, whatever it is, will
be called its ORG, for "origin".) Moreover, BASIC is
available with 6, 10, 12, and 14 digits of numeric
precision, as well as the standard 8 digits. North
Star manufactures a Hardware Floating Point Board
which will perform arithmetic with any of the above
precisions far faster than equivalent microcomputer
software routines. A version of BASIC is available
which is designed to use the power of this board, and
which, as a result, does not include the same
arithmetic routines found in standard BASIC, since
their functions are duplicated more efficiently in
the circuitry of the board itself.

Any combination of these three options (different
origin, different precision, and FPB arithmetic) may
be ordered in a special, NON-STANDARD version of
BASIC for a nominal fee. This section discusses the
explicit details and the ramifications of the
differences between these special BASICs and the
standard BASIC.

DIFFERENT ORIGIN

BASIC may be "re-located" to begin at any of the
sixty-four l024-byte address boundaries in memory.
It is, of course, advisable to avoid certain areas of
memory, most notably those which contain the DOS and
the bootstrap PROM. If you have any other system
software (such as special I/O routines in PROM, etc.)

·,

- NORTH STAR BASIC - 0-12



MISCELLANEOUS TOPICS (Continued)

which must exist in a certain region of memory, you
should also avoid re-Iocating BASIC into these areas
as you avoid the DOS and North Star PROM regions.

DIFFERENT PRECISIONS

Within RAM and in diskette data files, numeric
elements of differing precision will take different
amounts of storage space. Standard 8 digit numbers
require 5 bytes, for example, while 14 digit numbers
require 8 bytes.

Because of this size difference between numbers of
different precisions, it is not possible for a BASIC
program which is operating under a BASIC of precision
X to READ numeric elements from data files created
under a BASIC of precision Y using the READ#
statement in normal fashion. That is,

READ 'I,A

under 8 digit BASIC will not return a correct value
if used to retrieve a numeric element created under
14 digit BASIC. It is possible to read "foreign"
files such as these by accepting data byte-by-byte
and reconstructing appropriate values, making
allowances for difference in precisions.

FLOATING POINT BOARD (FPB) BASICS

versions of BASIC which use the North Star FPB to
perform arithmetic typically operate much faster than
those which use software to do the same calculations.
Moreover, FPB BASICs are somewhat smaller than
software-arithmetic versions. Depending upon the
precision required, an FPB BASIC is approximately 750
bytes smaller than the corresponding version which
does arithmetic with software. Except for the
increased speed of computation which is realized with
Hardware Floating Point versions of BASIC, there is
no operational difference between FPB and non-FPB
BASICs. In particular, BASIC programs written under
an FPB system will run without modification (although
more slowly) on a non-FPB system, as long as the
numeric precisions are the same, and other
considerations are equal. However, FPB BASIC
interpreters themselves will not operate correctly in
computers which do not include the Floating Point
Board.

SEE ALSO: APPENDIX 3: IMPLEMENTATION NOTES

- NORTH STAR BASIC - 0-13



·,,
;

•···,

·,

·•

·••
·•····;
•·•
,
·;· ~···;
·:

··

·
•

•·········,,
•

SAMPLE PROGRAMS

APPENDIX 1

The following are sample programs written in North star BASIC.
Each has been fully tested and thoroughly debugged. and is
guaranteed to run on any version of North Star BASIC. Release 4
or later, which has at least a-digit precision and has not been
stripped of trigonometric and exponential functions.

IBB REM
110 REM PRINT a sine wave vertically on the page
III REM
115 FOR J=l TO IBB STEP .1
12B T=SIN(J)
13B S=INT(3B*T)
140 PRINT TAB(30+S),"*"
15B NEXT
16B END

100 REM Input a string and check that it is a legal integer.
IB5 REM
lIB DIM A$ (72)
115 PRINT \ INPUT "TYPE AN INTEGER: ",A$
12B IF LEN(A$)=B OR LEN(A$) > 8 THEN GOTO 50B
13B FOR J=l TO LEN(A$)
14B IF A$(J,J) < "B" THEN 50B
145 IF A$(J,J) > "9" THEN 500
150 NEXT J
155 PRINT "TilE INTEGER IS OK'" ,VAL(A$)
16B GOTO 115
500 REM Case not ok
510 PRINT "NOT A POSITIVE INTEGER WITH AT LEAST ONE"
515 PRINT llDIGIT AND NO MORE THAN 8 DIGITS. TRY AGAIN. II

52B GOTO 115

10B REM
110 REM Print a table of formatted values.
120 REM
130 FOR J=l TO 10B
140 PRINT %3I,J,
15B PRINT %6F3,SIN(J) ,%7F4,COS(J),
16B PRINT %lBE3,EXP(J),
17B PRINT %12FIB,RND(0)
180 NEXT

···,
···

- NORTH STAR BASIC - Al-l



SAMPLE PROGRAMS (Continued)

100 REM Construct a file containing numeric squares,
110 REM and then use random access to compute squares
120 REM of typed input values.
125 REM Program assumes file "SQTABLE lt exists and will
126 REM fail if it doesn't.
127 REM Both sequential and random access are used here.
130 OPEN *0,"SQTABLE"
140 FOR J=0 TO 500
150 WRITE 40, JT2
160 NEXT
170 INPUT "X=",X
180 IF X<0 OR X>500 OR X<>INT(X) THEN END
190 READ *0%5*X,X2 \ REM Each number takes 5 bytes in file.
200 PRINT. "X SQUARED:" ,X2
220 GOTO 170

10 REM Various utility functions which may be handy
20 REM in writing programs.
30 REM

300 DEF FNC1(X) \ REM Returns ARCCOS(X) in radians.
305 REM X must lie in range -1 ... 1
310 IF X=-l THEN RETURN 3.1415926 \ REM ARCCOS (-l)=PI
320 IF X=0 THEN RETURN 3.1415926/2 \ REM ARCCOS(0)=PI/2
330 RETURN ATN(SQRT(1-xT2)/X) \ REM All other cases of X
340 FNEND
350 REM
360 REM
400 DEF FNS1(X) \ REM Returns ARCS1N(X) in radians.
405 REM X must lie in range -1 ..• 1
410 IF ABS(X)=l THEN RETURN X*(3.1415926/2)
415 REM ARCSIN(+\- 1) = +\- PI/2
420 RETURN ATN(X/SQRT(1-XT2)) \ REM All other cases of X
430 FNEND
440 REM
450 REM
500 DEF FNB(B,P)=INT(B/2TP)/2<>INT(INT(B/2Tp)/2)
510 REM Returns the Pth bit in byte B -- 0 or 1
520 REM
530 REM

- NORTH STAR BASIC - Al-2



,

·,
,,

,·,
··

60e
605
6e6
61e
615
616
62e
625
63e
635
640
645
650
655
66e
665
67e
675
68e
685
690
695
700
705
710
715
716
720
725
730
735
740
745
750
755
76e
765
770
775
78e
785

SAMPLE PROGRAMS (Continued)

DEF FND(H$)
REM Converts hex string in H$ to decimal value
REM and returns that. Error condition occurs
REM if H$ is null or contains non-hex digits.
REM *** Uses variables T, E, and C without
REM restoring them at return!
IF H$="II THEN 675
T=0
FOR E=LEN(H$) TO 1 STEP -1

C=ASC(H$IE,E»
IF (C < ASCI"e"» OR (C ) ASC("F"» THEN EXIT 675
IF IC )= ASC("e"» AND (C <= ASC("9"» THEN C=C-48
IF IC )= ASC("A"» AND (C <= ASC("F"» THEN C=C-55
IF (C ) ASCI"9"» AND IC < ASCI"A"» THEN EXIT 675
T=T+C*(16T(LENIH$)-E»

NEXT
RETURN T
PRINT "BAD HEX NUMBER"
RETURN -1
FNEND
REM
REM
OEF FNH$ (D)
REM Given decimal value D, returns string value
REM corresponding to hex form of D.
REM Negative arguments are turned positive,
REM non-integer numbers are truncated.
REM Uses variables Hl$, D2, H, and I without
REM restoring them upon return.
O=INT(ABS(O» \ Hl$=""
H=INT(LOG(0)jLOG(16)+.5)
FOR I=H TO 0 STEP -1

02=INTIOj(16TI»
IF 02 )= Ie THEN Hl$=Hl$+CHR$ IASC ("A") +02-1e)
IF 02 < 10 THEN Hl$=Hl$+CHR$(ASC("0")+02)
D=D- 102* 116TI»

NEXT
RET'URN Hl$
FNENO
REM
REM

- NORTH STAR BASIC - AI-3



b) The size of the stack which holds accumulated
partitioning information has been limited to
10g2(N) by incorporation of the program segment
on page 82. (See Wirth, Fig. 2.16, this
corresponds to lines 1090-1160 here.)

•

10
11
12
15
20
30
35
36
50
60
70
80
90

100
110
120
130
135
140
150
160
170
180
190
195
200
210
215
220
230
235
240
250
260
270
280
299

1000
1001
1002
1003
1010
1015
1020
1025
1030
1040
1050

SAMPLE PROGRAMS (Continued)

PRINT "QUICKSORT-A TEST PROGRAM -- NUMBERS"
PRINT "VERSION 1. 0 -- 3/20/78"
PRINT "NORTH STAR COMPUTERS, INC."
REM Sorts array A of N numbers into ascending order.
REM Uses the array-partitioning scheme as
REM explained in section 2.2.6 (pp. 76-82) of
REM Wirth, ALGORITHMS + DATA STRUCTURES = PROGRAMS
REM (Prentice-Hall - 1976).
REM The quicksort mirrors Wirth's non-recursive
REM version (program 2.11, p. 80), and includes
REM the modifications suggested In the text -
REM
REM a) Cornparand X is selected at random (line 1030)
REM to avoid Quicksort's poor worst-case behavior.
REM
REM
REM
REM
REM
REM
REM
REM Note that the stack array, 59, is declared in
REM a DIM statement (line 210) before the Quicksort
REM routine is called, and the random-number
REM generator is I!randomized ll at this time also.
N=l000 \ REM Sort N numbers
DIM A(N), S9(INT(LOG(N)/LOG(2)+1),2)
REM A is main array, S9 is stack.
Q=RND(-l) \ REM Randomize PRN generator.
FOR Q=l TO N\A(Q)=RND(0)\NEXT
REM Above fills A with random numbers.
FOR Q=l TO N\PRINT A(Q)\NEXT \ REM Verify randomness.
PRINT I!BEGIN SORTI!
GOSUB 1000
PRINT "END SORT"
FOR Q=l TO N\PRINT A(Q)\NEXT \ REM Show sorted array.
END
REM BEGIN Quicksort in North Star BASIC
REM Relies on existence of N, and arrays S9 and A
REM Uses L, R, I, J, X, S, and W without
REM restoring them.
S=l \ REM S is stackpointer.
S9(1,1)=1 \ S9(1,2)=N \ REM S9 is pre-DIMmed stack.
L=S9(S,1) \ R=S9(S,2) \ S=S-l
REM Land R are left and right partition boundaries.
I=L \ J=R \ X=A(INT(RND(0)*(R-L)+.5)+L) \ ! "sort",
IF A(I) >= X THEN 1050 \ 1=1+1 \ GOTO 1040
IF X >= A(J) THEN 1060 \ J=J-l \ GOTO 1050

- NORTH STAR BASIC - Al-4



·•
(

,
·

;·

·,

·•

·,

····,

SAMPLE PROGRAMS (Continued)

1060 IF I > J THEN 1080
1070 W=A(I) \ A(I)=A(J) \ A(J)=W \ 1=1+1 \ J=J-l
1080 IF I (= J THEN 1040
1090 IF J-L >= R-I THEN 1140
1110 IF I >= R THEN 1130
1120 8=8+1 \ 89(8,1)=1 \ 89(5,2)=R
1130 R=J \ GOTO 1170
1140 IF L >= J THEN 1160
1150 5=8+1 \ 89(8,1)=L \ 89(8,2)=J
1160 L=I
1170 IF L ( R THEN 1030
1180 IF 8 > 0 THEN 1020
1199 PRINT \ RETURN \ REM END Quicksort.

- NORTH 8TAR HA8Ie - Al-S



SAMPLE PROGRAMS (Continued)

1 ! llQUICKSORT-B TES'I' PROGRAM -- STRINGSQRT"
2 ! "VERSION 1. 0 -- RELEASE DATE: 3/20/78"
3 !" NOR'I'H STAR COMPUTERS, INC."
4 REM Generates N strings of length G7, each containing random
5 REM characters. Strings held in "super string" Rl$.
6 REM Uses Same algorithm as numeric Quicksort-A program above,
7 REM except that this has been modified to sort strings using
8 REM North Star substring conventions and user-functions.
9 REM Many of the variable names have been changed, but sort

10 REM is the same.
12 G7=10\N=50
13 DIM R$(G7),K$(G7),Q$(G7),R1$(G7*N)
14 D1M U8(INT(LOG(N)/LOG(2)+.5),2) \ REM U8 is stack.
15 WB=RND(-l) \ REM randomize the random number generator
73 DEF FNX(X)=(X-1)*G7+1
74 DEF FNY(Y)=Y*G7
75 REM FNX and FNY are pointers to individual SUbstrings of
76 REM simulated array Rl$.
99 REM Below fills Rl$ with random strings.

100 FOR 1=1 TO N
110 Q$(l,l)=":"
120 FOR J=2 TO G7-1
130 Q$(J,J)=CHR$(INT(RND(0)*25+.5)+65)
150 NEXT J
170 Q$(G7,G7)="*"\R1$(FNX(I),FNY(I»=Q$
175 !%3I,1," ",Q$
180 NEXT I
190 ! "CREATION PHASE ENDED -- SORTING BEGINS"
200 GOSUB 1000 \ REM Quicksorts R1$
300 !"SORTING PHASE ENDED -- RESULTANT ARRAY:"
320 FOR 1=1 TO N
330 !%31,1," ",Rl$(FNX(I),FNY(1)),
332 IF I=N THEN 336
335 IF I/15<>INT(I/15) THEN 336\INPUT "",X$\GOTO 340
336 ! \ REM Above line and this are for output paging.
340 NEXT I
360 END

1000 REM Quicksort of Rl$, using FNX and FNY to point
1005 REM to SUbstrings.
1010 N8=1\U8(l,l)=1\U8(l,2)=N
1015 REM NB is stack pointer.
1020 L=U8(N8,l)\R=U8(N8,2)\N8=N8-1
1030 I=L\J=R\Z 8=INT ( (R-L) *RND (0) +.5) +L\! " ." ,
1035 K$=R1$ (FNX(Z8) ,FNY(Z8)
1040 IF R1$(FNX(I),FNY(I»)>=K$ THEN 1050\I=I+1\GOTO 1040
1050 IF K$>=R1$(FNX(J) ,FNY(J» THEN 1060\J=J-1\GOTO 1050

- NORTH STAR BASIC - Al-6



SAMPLE PROGRAMS (Continued)

1060 IF I>J THEN 1090
~. 1070 R$=Rl$(FNX(I) ,FNY(I))

1071 Rl$(FNX(I) ,FNY(I))=Rl$(FNX(J),FNY(J))
10S0 Rl$(FNX(J),FNY(J))=R$\I=I+l\J=J-l
1090 IF I<=J THEN 1040
1110 IF J-L>=R-I THEN 1150
1120 IF I>=R THEN 1140
1130 NS=NS+l\US(NS,I)=I\US(NS,2)=R
1140 R=J\GOTO I1S0
1150 IF L>=J THEN 1170
1160 NS=NS+l\US(NS,I)=L\US(NS,2)=J
1170 L=I
I1S0 IF L<R THEN 1030
1190 IF NS>0 THEN 1020
1199 !\RETURN

- NORTH STAR BASIC - AI-7



SAMPLE PROGRAMS (Continued)

10 REM Test program for string search
20 REM Version 1.0 -- 11/01/78
30 REM North Star Computers, Inc.
40 B=1000 \ REM Maximum length of any string used in program
50 DIM Al$(B),A2$(B) \ REM These will hold arguments to FNS.
60 DIM M$(B),N$(80)
65 M$=CHR$ (3)
66 REM Control-Cis will separate names in master list.
70 REM M$ is main string, N$ is one name, F$ is name to find.
80 REM Test program will input names (or arbitrary strings),
90 REM rejecting duplications, and adding new ones to end
95 REM of master list.

100 GOSUB 1000 \ REM Give directions.
110 GOSUB 2000 \ REM Get a name, put in N$.
120 IF N$="11 THEN 160 \ REM N$ will be null if time to quit.
130 P=FNSIM$,CHR$(3)+N$+CHR$(3»
140 GOSUB 3000 \ REM Add N$ to M$ if P=0, Otherwise, advise
145 REM user that it is already in the main string.
150 GOTO 110
160 PRINT "QUIT"
199 END

1000' PRINT "This program compiles a list of names which"
HH0 PRINT "you type in from the keyboard. Duplications"
1015 PRINT "are caught and rejected. Be sure to strike"
l02t2l PRINT "the RETURN key after typing every name. II

l03t2l PRINT "Striking RETURN alone when I ask for a name"
H'14t2l PRINT "will quit the program."
1999 RETURN
2000 REM Get a name, put in N$.
2901 REM N$ will be null if time to quit.
2005 PRINT
2910 INPUT "Name (just strike <CR> to quit): n ,N$
2999 RETURN
3900 REM Add N$ to M$ if P=0, Otherwise, advise user
3010 REM that itls already in the main string.
3020 REM Add-new-name fails if no more room in M$
3030 IF P=0 THEN 3060
3040 PRINT "*** Already in main string!"
3050 GOTO 3999
3060 REM Now, check to see if addition is physically possible.
3070 IF LENIM$)+LENIN$)+l <= B THEN 3110
3080 PRINT "*** No room in main string to add. Add rejected."
3090 GOTO 3999

- NORTH STAR BASIC - Al-8



"-,,
,,,

,.
,

,,,

,,,
,,,

,,
,,,,
,,,

,
!

,
,
,,

,,
;
i
,
;
,
,.

;
,
,,

,.,

,
,,,

3110
3120
3130
3999
4000
4005
4010
4020
4030
4040
4045
4050
4055
4056
4060
4070
4080
4090
4095
4096
4097
4999

SAMPLE PROGRAMS (Continued)

REM Now, REALLY add string and separator to main string.
M$=M$+N$+CHR$(3)
PRINT "<",N$,"> : added."
RETURN
DEF FNS(A1$,A2$)
REM Uses variable T without preserving it.
REM Looks for A2$ in AlS. Value returned is
REM first character position in Al$ where A2$
REM is found. Zero is returned if A2$ not found.
IF LEN(A2$» LEN(Al$) THEN 4090
REM If A2$ longer than Al$, can't be contained in Al$
IF A2$="" THEN 4090
REM Null string is not substring of any non-null string.
REM Scan down the string until a match is found.
FOR T=l TO LEN(Al$)-LEN(A2$)+1

IF Al$(T,T+LEN(A2$)-1)=A2$ THEN EXIT 4095
NEXT
RETURN 0 \ REM A2$ not in A1$
RETURN T
REM T is char position in Al$ where A2$
REM is first found.
FNEND

·•,
•
l
,.
••
,,·

- NORTH STAR BASIC - Al-9



SAMPLE PROGRAMS (Continued)

"A magic square is a grid of numbers in which"
I'all the rows, all the COlumns, and both ll

I'diagonals add up to the same number."
"This program tests to see if a given square ll

"of number s is mag ic. n

"You may choose to input a square of up"
"to 5x5 numbers. I will tell you whether"
"or not the square you give me is a magic"
I'square. Please be sure to type your"
"answers to me when I ask. Conclude each"
I'response by striking the RETURN key.1I

in BASIC ***

Use S to DIM A.

one side of square
magic, nonzero if magic
suspected square

Global Variables Used --
S number of elements in
M flag, 0 if square not
A array which holds the

Magic Squares Program
Version 1.0 -- 11/01/78
North Star Computers, Inc.
*** Demonstrates Array Handling

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM Main routine.
GOSUB 1000 \ REM Give Directions.
GOSUB 2000
REM Get DIM of side from user, and DIM A.
REM Length of one side of square now in S.
GOSUB 3000 \ REM Have user fill array elements.
GOSUB 4000 \ REM Determine if square is magic.
REM M is nonzero if square is magic.
GOSUB 5000 \ REM Report results to user.
END \ REM End of main routine.
REM Give directions for this program to the user.
PRINT "**** North Star Magic Squares Program ****"
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
RETURN
REM Get DIM of side, S, from user.
PRINT
INPUT "Type the length of one side: ",S
IF S>=l AND S <= 5 AND S=INT(S) THEN 2070
PRINT "*** BAD INPUT"
PRINT "Your answer must be an integer from"
PRINT "l to 5. Please Try ag ain. "
GOTO 2010
DIM A(S-l,S-l) \ REM ~-element is used to save space.
RETURN
REM Have user fill array elements, and re-display

10
20
30
40
50
60
70
80
90
95

100
110
120
125
130
140
150
160
170
199

1000
1010
1020
1030
1035
1040
1050
1060
1064
1065
1070
1075
1080
1090
1110
1120
1999
2000
2010
2020
2030
2040
2050
2051
2060
2070
2999
3000

- NORTH STAR BASIC Al-10



>,,

,

3005
3010
3020
3021
3030
3040
3045
3050
3060
3070
3080
3090
3110
3120
3130
3140
3150
3151
3160
3170
3175
3180
3190
3210
3215
3220
3230
3240
3999
4000
4010
4020
4030
4040
4050
4110
4130
4140
4150
4155
4160
4170
4180
4181
4190
4210
4211
4220
4225
4230

SAMPLE PROGRAMS (Continued)
REM the input as a square.
PRINT
PRINT lIPlease give me the appropriate number to"
PRINT "fill each co-ordinate of the proposed magic"
PRINT "square. I will give co-ordinates in row-"
PRINT "col umn form: II

PRINT TAB(3),"(row,column)= <you type number here>"
PRINT
FOR R0=0 TO 8-1

FOR C0=0 TO 8-1
PRINT "(",%lI,R0+1,",",C0+1,")= ",
INPUT "",A(R0,C0)

NEXT
NEXT
PRINT
PRINT "All square positions have been filled."
PRINT "Thank you!"
PRINT
PRINT "Here is your proposed magic square: 1I

PRINT
REM Now scan through and display square in grid format.
FOR R0=0 TO 8-1

FOR C0=0 TO 8-1
PRINT TAB(C0*12) ,A(R0,C0),

REM Item field widths are 12 columns.
NEXT
PRINT \ PRINT \ PRINT

NEX~'

RETURN
REM Determine if square in array A is magic.
REM On return, M <> 0 if magic, M=0 if not.
REM Add up rows, columns, and diagonals.
REM "Master" total kept in TI,
REM Temporary Row, Column, and Diagonals
REM totals kept in Rl, Cl, Dl, D2.
M=0 \ REM Assume not magic until we prove it is.
Dl=0 \ D2=0 \ REM Initialize diagonals.
FOR R0=0 TO 8-1

D1=D1+A(R0,R0) \ D2=D2+A(R0,8-1-R0)
REM Above updates diagonals

Rl=0 \ Cl=0 \ REM Initialize row, column temp totals.
FOR C0=0 TO S-l

R1=R1+A(R0,C0) \ C1=C1+A(C0,R0)
REM Above updates row and column.

NEXT
IF R0=0 THEN T1=R1

REM Arbitrarily choose 1st row as master total.
IF (R1<>T1) OR (C1<>T1) THEN EXIT 4999

REM If row or column <> master, return M=0.
NEXT

- NORTH STAR BASIC - A1-11



SAMPLE PROGRAMS (Continued)

4240 IF (DI<>TI) OR (D2<>Tl) THEN 4999
4245 REM If diagonals don't match master, return with M=0.
4250 M=l \ REM If here, all totals have matched master.
4999 RETURN
5000 REM Report results to user.
502121 PRINT "This square is ",
503121 IF M=0 THEN PRINT "NOT ",
5040 PRINT "a magic square."
5050 PRINT
5999 RETURN

- NORTH STAR BASIC - Al-12



•

ERROR MESSAGES

APPENDIX 2

This section lists all the possible error messages printed by
North Star BASIC. For any errors which are trappable using the
ERRSET statement, the error number is given in parentheses after
the identifying error-message.

The brief discussion of the general causes of each error is
intended in large part to supplement the ERROR MESSAGE
descriptions as given in the exposition sections for each
language feature (and as also occasionally treated in DISCUSSION
sections) •

ARG ERROR (1)
An attempt has been made to give an invalid argument to a
COMMAND or function.

ARG MISMATCH ERROR (13)
The number of arguments in the call for a user-defined
function does not match the number of parameters for that
function.

CONTINUE ERROR (non-trappab1e)
An illegal attempt has been made to CONTinue program
execution. Program execution may not be CONTinued if the
previous execution stopped on an error, if any editing of
the current program has taken place during an interruption,
or if the program has executed an END statement.

CONTROL STACK ERROR (non-trappab1e)
This error occurs when there is improper nesting of FOR and
NEXT statements, GOSUB and RETURN statements, or multi-line
user-function calls and RETURN statements. It also occurs
when a FOR statement is the last statement in a program.

DIMENSION ERROR (2)
An attempt has been made to redimension an array or string,
or to use the DIMension statement in some other, illegal,
fashion.

DIVIDE ZERO ERROR (9)
An attempt has been made to divide by zero.

DOUBLE DEF ERROR (non-trappab1e)
There exists more than one definition for the same user
function in the same program. Functions are defined at RUN
time, so this message will occur before program execution
actually begins.

FILE ERROR (7)
The program is trying to access a diskette file which
doesn't exist or is of incorrect type. This error will also

,
- NORTH STAR BASIC - A2-1



ERROR MESSAGES (Continued)

occur when you try to LOAD a BASIC program from a type 2
file which has never before held a BASIC program. File
errors occur when attempts are made to use file numbers
which are less than 0 or greater than 7, or when a file is
being OPENed, but the file number specified is already in
use. Attempts to CREATE or NSAVE files onto diskettes too
fUll to hold them also yield a FILE ERROR. Finally, a FILE
ERROR can occur if any attempts are made to store
information on, or erase information from, a write-protected
diskette.

FORMAT ERROR (5)
An illegal format string has been used in a PRINT statement.
Either the format string is formed incorrectly, or the field
specifications are too big or are inconsistent. Also, an
attempt to PRINT a value which won't fit into a specified
field, or to PRINT a non-integral value using I-format will
result in this error.

FUNCTION DEF ERROR (non-trappable)
This means that BASIC has encountered the beginning of a new
user-function definition (a DEF statement) before the
previous definition has been concluded. Generally, the
function defined immediately above the offending DEF
statement does not include (but needs) a FNEND statement.
This error also occurs when an attempt is made to call an
undefined user-function.

HARD DISK ERROR (8)
An impossible disk access was attempted. This can result
from not having a properly mounted diskette, or from having
a diskette with unreadable data. See the DOS manual for
further discussion.

ILLEGAL DIRECT ERROR (non-trappab1e)
An attempt was made to use a statement in direct mode which
can only be used as part of a program. See DISCUSSION: SOME
BASIC CONCEPTS for a list of those statements which may be
used in direct mode. Note that user-functions may not be
used in direct mode.

INPUT ERROR (12)
During the execution of an INPUT statement, the user typed
an improprely formed numeric constant in response to a
programmed request for numeric input.

INTERNAL STACK OV (non-trappable)
This message should not occur in normal BASIC programs. It
means that an unanticipated amount of internal BASIC memory
was required to process the STATEMENT or COMMAND. Please
report the circumstances to North Star (in writing) if this
error occurs.

- NORTH STAR BASIC - A2-2



ERROR MESSAGES (Continued)

LENGTH ERROR (16)
This error occurs if an attempt is made to type a longer
line of text than BASIC allows. (This limit may be reset by
using the LINE statement.) Typically, LENGTH ERRORs may
occur when typing in response to INPUT statements, or when
entering program statements or commands to BASIC. Unless
otherwise personalized or informed by the LINE statement,
BASIC assumes that a line may be no longer than 80
characters.

LINE NUMBER ERROR (6)
There is a missing or improperly formed line number in the
erroneous COMMAND or STATEMENT. Also, if a line number is
specified in a COMMAND or STATEMENT, but that line cannot be
found in the current BASIC program, a LINE NUMBER ERROR will
be generated.

MEMORY FULL ERROR (non-trappab1e)
The total amount of memory available to BASIC is
inSUfficient to contain the current program, its variables,
and temporary storage. The MEMSET command may be used to
expand the available memory area. Note that, when
performing string concatenations, BASIC reserves as
temporary storage an area in memory as large as the
concatenated string itself. BASIC also reserves this
temporary storage when PRINTing expressions, so PRINTing
large string expressions may sometimes result in this error.

MISSING NEXT ERROR (non-trappab1e)
Within an executing program, a FOR statement is encountered
for which no matching NEXT can be found.

NO PROGRAM ERROR (non-trappab1e)
This error occurs when an attempt is made to RUN and there
is no current program.

NUMERIC OV ERROR (14)
This error occurs whenever an arithmetic operation results
in a number larger than 9.9999999E+62. Numbers larger than
this cannot be represented in standard versions of North
Star BASIC. (Numbers smaller than IE-64 are converted to
~ .)

OUT OF BOUNDS ERROR (3)
This message occurs when a numeric argument is not within
legal range, e.g., when an array subscript is too large or
too small, or when an argument used with CALL, EXAM, FILL,
INP, or OUT is not in the correct range. When dealing with
diskette files, an OUT OF BOUNDS ERROR will occur as
attempts are made to READ from or WRITE to a file beyond its
absolute end (determined by the file size) •

- NORTH STAR BASIC - A2-3



ERROR MESSAGES (Continued)

READ ERROR (11)
When using the READ statement, if an attempt is made to READ
a numeric value into a string variable or vice versa, or to
READ any value when there is no more DATA available, a READ
ERROR will occur.

STOP (15)
This is not really an error, but when cOntrol-C is enabled
and pressed while an ERRSET statement is in effect, the
attempted program interruption is treated as a program
error, with 15 as its code. In other words, "error 15"
means that control-C was pressed while ERRSET is in effect.

SYNTAX ERROR (10)
This is the most commonly-generated error message. It
occurs when a language feature has been used improperly, or
has been improperly formed (typed incorrectly). Most of
these mistakes become obvious upon brief (but careful)
examination of the faulty COMMAND or STATEMENT (as compared
with its manual description). Refer to the appropriate
exposition or DISCUSSION section to determine the correct
form of the language feature in question, and make sure that
all keywords are correctly spelled.

TOO LARGE OR NO PROGRAM ERROR (non-trappable)
This message occurs when an attempt is made to LOAD, APPEND,
or CHAIN to a program which either is too large to fit in
the program/data area, or is not a valid BASIC program.

TYPE ERROR (4)
TYPE ERRORs happen when a string value appears where a
numeric value is expected, or vice versa. With regard to
disk file operations, an attempt to OPEN a file whose actual
type doesn't agree with the type specified in the program,
or to READ a value on disk into a program variable of the
wrong type, will lead to this error.

- NORTH STAR BASIC - A2-4



"-.J

IMPLEMENTATION NOTES

APPENDIX 3

This appendix is designed to provide important details concerning
some of the internal workings of North Star BASIC, and the
internal representations of data within BASIC, in order to help
you better understand the operation of the system, and to
facilitate writing of programs which perform tasks which would be
difficult or impossible to undertake without such information.

DISKETTE DATA-STORAGE FORMATS

All NUMBERS which have been written to diskette by a BASIC
of a given precision will have a standard fixed storage size
in bytes. However, the storage size of a number written to
disk by 6-digit BASIC, for example, will be smaller in size
than that of a number written by 10-digit BASIC. Here is a
chart which tells how many bytes a number will require on
disk, depending upon the precision of the BASIC writing it:

PRECISION BYTES

6 4
B 5
10 6
12 7
14 B

Numbers are stored in packed, binary-coded-decimal (BCD)
form. The representation is as follows:

first byte:
bits 7-4 = most signicant digit of value in BCD
coding
bits 3-0 = next most significant digit of value

middle bytes:
bits 7-4 = next significant digit of value in BCD
coding
bits 3-0 = next significant digit of value

last byte:
bit 7 = sign (l=negative, 0=positive)
bits 6-0 = exponent in excess 64 binary
representation (If all bits in the last byte are 0,
the entire number is 0.)

All values are normalized.

The decimal value of the first byte in a number stored on
disk will always be greater than 15, even when the number is
zero. (This is how the TYP function determines if the next
data element is numeric.)

- NORTH STAR BASIC - A3-1



IMPLEMENTATION NOTES (Continued)

STRINGS are stored using a number of bytes equal to the
length of the string ~lus two or three overhead bytes.
strings of length less than or equal to 255 are stored with
two overhead bytes, the first one being of decimal value 3,
and the second containing the number of characters in the
string. The information bytes -- the string itself
-- follow the overhead bytes. A string value of length
greater than 255 is stored with three overhead bytes. the
first one being of value 2. and the second two being the low
and high bytes, respectively, of the length of the string,
expressed as a 16-bit integer. Again, the string itself
follows the overhead.

The ENDMARK for a sequential file is a single byte of value
1.

FILE BUFFER SIZES -- LIFETIMES OF BUFFERS

When each file is OPENed, an area of RAM memory is reserved
as a high-speed data-transfer "buffer" between BASIC and the
disk drive. A buffer of 256 bytes is reserved when OPENing
a single-density file. with double-density files, the
buffer size is 512 bytes. Buffers are used to make disk
access as efficient and quick as possible. When the file is
CLOSEd, its buffer region does not return to free-memory,
but is reserved for later use by any files which will be
opened under the file number associated with the buffer.

TYPE-DEPENDENT INFORMATION IN A TYPE-2 FILE DIRECTORY ENTRY

Those familiar with the DOS and the details of diskette
directory entries will realize that 3 bytes are reserved in
each entry for what is termed "type-dependent" information.
For a type 1 file, this area is used to store the GO address
for the file. For type 2 files -- that is, BASIC program
files -- the information stored in the lItype-dependent" slot
is the actual size of the program in disk blocks. This
information, stored as part of a program is directory entry,
and updated every time a program is SAVEd or NSAVEd into
that file. allows BASIC to make economical use of its time
when LOADing a BASIC program -- it may read only as much
program data as actually exists in a file. and need not
waste time attempting to LOAD information from beyond the
end of the program. This number is stored in byte 13 in a
type 2 file's directory entry. See the DOS section of the
NORTH STAR SYSTEM SOFTWARE MANUAL for more information about
directory entries.

PRINT HEAD TABLE

At memory addresses ORG+l7 and ORG+IB (ORG+lIH and ORG+l2H)
there exists a pointer containing the low and high bytes,

----'

- NORTH STAR BASIC - A3-2



c,
o
o
o
o

..

o,,

,

IMPLEMENTATION NOTES (Continued)

respectively. of the address in memory where BASIC's "print
head-table" is stored. Each of the 8 bytes in this table
contains the current cursor position for one of BASIC's 8
possible I/O devices (starting with device #0). For some
applications, such as plotting. some users may wish to EXAM
or FILL these bytes to avoid LENGTH ERROR messages or the
automatic carriage-return which BASIC supplies when enough
characters to fill a line have been PRINTed on a given
device. Users with standard versions of BASIC may use the
following user-function to return the address of the table
entry for any of the 8 devices. EXAM or FILL this address
to determine or change the value of the print-head counter
for the given device.

DEF FNH(D)=EX~1(11537)+(EXAM(11538)*256)+D

REM D IS DEVICE NUMBER FROM 0 TO 7

FILE-HEADER TABLE

This table follows immediately the 8 bytes of the print-head
table described above. The file-header table is 80 bytes
long, and contains one 10-byte entry for each of the 8
possible open files (~ to 7). Each entry has the following
format:

byte 0: status byte
bytes 1-2: buffer address for the file (low/high)
bytes 3-4: disk address of the open file (the number of

the file's beginning disk block)
bytes 5-6: filesize in blocks
bytes 7-9: current file pointer -- this points to the

next byte to be accessed, expressed as an offset from
the start of the file. Because three bytes (arranged
as middle byte, high byte, low byte) are used to
represent the pointer value, BASIC may access files as
large as an entire diskette side (single or double
densi ty) •

BASIC PROGRAM PRE-PROCESSING

Once program lines are typed into BASIC, they are pre
processed automatically into a more compact, efficient form
where each reserved word maps onto a single byte value, and
line number references in GOTO, GOSUB, RESTORE and similar
statements are collapsed into 16-bit values. This permits
faster execution, and more efficient use of storage space in
both RAM (when the program is RUNning or under development)
and disk (when the program is SAVEd or NSAVEd). When the
program is LISTed, the compaction process is reversed, and
the complete text of the program is restored for the user.
The conversion of program-line text into compacted form even
extends to REM statements. REMs which include instances of

..

•·

•

•
~

:
•·,

•··

- NORTH STAR BASIC - A3-3



IMPLEMENTATION NOTES (Continued)

keywords will take up less memory space than REMs of
equivalent length which contain no embedded keywords. For
example

REM FOR THE NEXT ORIGIN, LETS TRY 2000H

will be competed into a much smaller internal form than

REM 2000H HEX IS THE NEW STARTING PLACE

because the former inclUdes instances of FOR, NEXT, OR, and
LET -- all keywords which will be compacted to single-byte
form. The second REM includes no embedded keywords, so will
be stored in exactly the same form as it is written. Spaces
are retained in the number and order typed in the program
line to preserve the author's style and any indentation.
Compaction does not occur within quoted strings.

Throughout the evolution of North Star BASIC, certain
single-byte keyword codes have had their meanings changed.
As a result, REMs in programs which were written under
earlier versions of BASIC may undergo small changes when the
programs are LISTed under release 4 or later versions of
BASIC. This is because these REMs included embedded
keywords which were compacted to single bytes, and now,
these codes are translated back into different keywords. In
particular, instances of CREATE, DUMP, and NULL in older REM
statements will become AUTO, MEMSET, and NSAVE respectively.
To correct this, just retype the correct form of the altered
REM statement and re-SAVE the program.

Note also that programs written under later versions of
BASIC will not always list properly under earlier BASICs,
especially if they include some of the newer keywords, such
as CREATE, ERRSET, etc.

THE INTERNAL FORM OF A PROGRAM

In RAM and on disk, a program is represented as a series of
program lines which have been converted to the compacted
form mentioned above. Each line is arranged as follows:

a) byte 0: contains the binary representation of the number
of bytes in the program line (called "N" here for
purposes of discussion).

b) bytes 1-2: the program-line number expressed as a l6-bit
binary integer (low byte/high byte) •

c) bytes up to N-2: the program line in its compacted form.
d) byte N-l: A carriage-return character (byte value 13 or

0DHI.

There is a standard END MARK (byte value 1) after the last

- NORTH STAR BASIC - A3-4



; .

IMPLEMENTATION NOTES (Continued)

line in the program.

USE OF RAM DURING PROGRAM EXECUTION

When a program is executing, BASIC maintains two variable
size data storage areas at opposite ends of memory. These
are the GENERAL DATA AREA and the BASIC CONTROL STACK. The
general data area begins immediately above the last byte in
the current BASIC program. This storage area contains
BASIC's symbol table, and static storage space which has
been allocated for numeric variables. arrays, and strings.
The general data area grows from low memory to high memory.

BASIC's control stack begins at the highest byte available
to the BASIC system, and grows downward, into low memory.
The stack contains highly transient information such as FOR
NEXT, GOSUB, and user-function call linkages. Whenever
program conditions lead to the case that one of these areas
is made to "grow" into the other. a lvIEMORY FULL ERROR
occurs.

- NORTH STAR BASIC - A3-5



CONVERSION TABLE

APPENDIX 4

DECIMAL-ASCII-HEX-BINARY CONVERSION TABLE

The following table is intended to ease the task of conversion
between the various numeric representations commonly used in
programming, as well as between numbers (of any kind) and the
ASCII character code.

Note that the ASCII character set only goes as far as decimal 127
(7FH, 01111111 B). Also, many "characters" in ASCII are 000
printing CONTROL CHARACTERS. Whenever a code corresponds to a
printable character, that will be given. In the case of control
characters, a description or name for the special character will
be given in parentheses.

DECIMAL

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HEX

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
lAH
IBH
lCH
IDH
lEH
IFH

BINARY

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
000H101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111

ASCII

(NUL)
( CONTROL-A)
(CONTROL- B)
(CONTROL-C)
(CONTROL- D)
(CONTROL-E)
(CONTROL-F)
(CONTROL-G, RINGS BELL)
(CONTROL-H, BACKSPACE)
(CONTROL-I, TAB)
(CONTROL-J, LINEFEED)
(CONTROL- K)
(CONTROL-L, FORMFEED)
(CONTROL-M, CARRIAGE RETURN)
(CONTROL-N)
(CONTROL-O)
(CONTROL-P)
(CONTROL-Q)
(CONTROL-R)
(CONTROL-S)
(CONTROL-T)
(CONTROL-U)
(CONTROL-V)
(CONTROL-W)
( CONTROL-X)
(CONTROL-Y)
(CONTROL- Z)
(ESCAPE)
(NON- PRINTING)
(NON-PRINTING)
(NON-PRINTING)
(NON-PRINTING)

- NORTH STAR BASIC - M-l



"·••
CONVERSION TABLE (Continued)

DECIMAL HEX BINARY ASCII
~

32 20H 00100000 (SPACE)
33 21H 00100001 !
34 22H 00100010 "
35 23H 00100011 #
36 24H 00100100 $
37 25H 00100101 %
38 26H 00100110 &
39 27H 00100111
40 28H 00101000 (
41 29H 00101001 )
42 2AH 00101010 *
43 2BH 00101011 +
44 2CH 00101100
45 2DH 00101101
46 2EH 00101110

; 47 2FH 00101111 I
48 30H 00110000 0
49 31H 00110001 1
50 32H 00110010 2
51 33H 00110011 3
52 34H 00110100 4
53 35H 00110101 5
54 36H 00110110 6

~. 55 37H 00110111 7
56 38H 00111000 8
57 39H 00111001 9
58 3AH 00111010
59 3BH 00111011 .,
60 3CH 00111100 <
61 3DH 00111101 =
62 3EH 00111110 >
63 3FH 00111111 ?

,

··•
·,
;

- NORTH STAR BASIC - M-2



CONVERSION TABLE (Continued)

DECIMAL HEX BINARY ASCII
'---"

64 40H 01000000 @
65 41H 01000001 A
66 42H 01000010 B
67 43H 01000011 C
68 44H 01000100 D
69 45H 01000101 E
70 46H 01000110 F
71 47H 01000111 G
72 48H 01001000 H
73 49H 01001001 I
74 4AH 01001010 J
75 4BH 01001011 K
76 4CH 01001100 L
77 4DH 01001101 M
78 4EH 01001110 N
79 4FH 01001111 0
80 50H 01010000 P

/

81 51H 01010001 Q
82 52H 01010010 R
83 53H 01010011 S
84 54H 01010100 T
85 55H 01010101 U
86 56H 01010110 V
87 57H 01010111 W '~

88 58H 01011000 X
89 59H 01011001 Y
90 5AH 01011010 Z
91 5BH 01011011 [
92 5CH 01011100 \
93 5DH 01011101 J
94 5EH 01011110 T OR -
95 5FH 01011111

- NORTH STAR BASIC - A4-3



"•I•,
••
i
f

CONVERSION TABLE (Continued)

,
1,
i,

DECIMAL HEX BINARY ASCII

;
·

i,
,

I

,
!
•,
•
,
i,
··
· -/,
•,··•
1

•
•
i

•,
:
;

,,,,
•,

•

•,··,,
,,

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60H 01100000
61H 01100001
62H 01100010
63H 01100011
64H 01100100
65H 01100101
66H 01100110
67H 01100111
68H 01101000
69H 01101001
6AH 01101010
6BH 01101011
6CH 01101100
6DH 01101101
6EH 01101110
6FH 01101111
70H 01110000
71H 01110001
72H 01110010
73H 01110011
74H 01110100
75H 01110101
76H 01110110
77H 01110111
78H 01111000
79H 01111001
7AH 01111010
7BH 01111011
7CH 01111100
7DH 01111101
7EH 01111110
7FH 01111111

a
b
c
d
e
f
9
h
i
j
k
1
m
n
o
p
q
r
s
t
u
v
w
x
y
z
(
I
}

(DELETE, RUB OUT)

,,
(
•:
•
!,
!

- NORTH STAR BASIC - A4-4



CONVERSION TABLE (Continued)

DECIMAL HEX BINARY ASCII
'-"

128 80H 10000000
129 81H 10000001
130 82H 10000010
131 83H 10000011
132 84H 10000100
133 85H 10000101
134 86H 10000110
135 87H 10000111
136 88H 10001000
137 89H 10001001
138 8AH 10001010
139 8BH 10001011
140 8CH 10001100
141 8DH 10001101
142 8EH 10001110
143 8FH 10001111
144 90H 10010000
145 91H 10010001
146 92H 10010010
147 93H 10010011
148 94H 10010100
149 95H 10010101
150 96H 10010110
151 97H 10010111 '-
152 98H 10011000
153 99H 10011001
154 9AH 10011010
155 9BH 10011011
156 9CH 10011100
157 9DH 10011101
158 9EH 10011110 ':';

159 9FH 10011111

- NORTH STAR BASIC - A4-5



····

- NORTH STAR BASIC - A4-6



,
•

CONVERSION TABLE (Continued) •
I

DECIMAL HEX BINARY ASCII
~

192 C0H 11000000
193 CIH 11000001
194 C2H 11000010
195 C3H 11000011
196 C4H 11000100
197 C5H 11000101
198 C6H 11000110
199 C7H 11000111
200 C8H 11001000
201 C9H 11001001
202 CAH 11001010
203 CBH 11001011
204 CCH 11001100
205 CDH 11001101
206 CEH 11001110
207 CFH 11001111
208 D0H 11010000
209 DIH 11010001
210 D2H 11010010
211 D3H 11010011
212 D4H 11010100
213 D5H 11010101
214 D6H 11010110
215 D7H 11010111 ~

216 D8H 11011000
217 D9H 11011001
218 DAH 11011010
219 DBH 11011011
220 DCH 11011100
221 DDH 11011101
222 DEH 11011110
223 DFH 11011111

1•

- NORTH STAR BASIC - A4-7



~.
,
>• CONVERSION TABLE (Continued)
f

DECIMAL HEX BINARY ASCII
'-~'

224 EeH llleeeee
225 EIH llleeeU
226 E2H llleeele
227 E3H llleeell
228 E4H 11l0Ue0
229 E5H llleUel
230 E6H llleelle
231 E7H ll10elll
232 E8H lllUe0e
233 E9H llleleel
234 EAH lllelele
235 EBH 11l010ll
236 ECH 11l0llee
237 EDH lllUlel
238 EEH lllellle
239 EFH lllellll
240 FeH lllle0ee
241 FIH ll1l00U
242 F2H lllleUe
243 F3H lllleell
244 F4H llllelee
245 F5H llllU01
246 F6H llllUle

~
247 F7H llllelll
248 F8H lll1l00e
249 F9H lll1l0el
25e FAH lllllUe
251 FBH lllllell
252 FCH llllllee
253 FDH llllllel
254 FEH llllllle

• 255 FFH llllllll

•,

i,,
•
···

,
•· - NORTH STAR BASIC - A4-8



BASIC TOPICS INDEX

APPENDIX 5

This is the index to topics and discussion sections in the BASIC
section of the System Software Manual, and is designed to help
the reader study North Star BASIC from a topical standpoint.

Listings to DISCUSSION sections are given in all-capital letters.
Those which refer to general topics are given in lower-case.

The page reference format is a hyphenated one, with the chapter
designation as a capital letter appearing on the left side of the
hyphen, and the page number within the chapter appearing in
arabic form on the right side. For example, the listing

constant, numeric D-l

indicates that the term "Numeric constant" is discussed in
chapter D, page 1. If a topic consumes a whole chapter, only the
chapter letter is given as the page reference. Page intervals
are denoted by inserting an ellipsis ( ... ) between the page
references of the first and last pages in the interval. Whenever
information about a given topic appears on more than one separate
page, the pages with the most important information are listed in
order first, then those with less important information. A semi
colon (;) separates the list of more-important references from
the less-important ones within an entry.

argument list K-l
arguments K-l~ B-9
arrays E

defaUlt dimensions E-3
re-dimensioning E-3

ASCII character set F-7
AUTOMATIC PROGRAM SEQUENCING M-6 ••• M-7

BCD (Binary Coded Decimal) 0-1; N-2, A3-l
bootstrap PROM, non-standard 0-7

CHAINING M-6 ••• M-7
character deletion, changing echo for 0-5
character set F-7
command B-9
COMMUNICATING WITH BASIC B-2
COMPATIBILITY WITH OTHER BASICS N

BCD arithmetic N-2
IF ... THEN evaluation N-3
input translation N-2
string handling N-l

concatenation F-3
console terminal B-2
constant, numeric D-l
constant, string F-l

- NORTH STAR BASIC - A5-1



D-l
D-6

F-3

·,
•

BASIC TOPICS INDEX (Continued)

cantrol-c inhibit 0-5
~ control characters 8-5

control statement J-l
current format H-7
current length F-2; F-7
current program 8-9

DATA FILES L-l ... L-9
appending to sequential files L-6
closing L-3
creating L-3
endmark L-4 ... L-7
file name L-1
file number L-3
file pointer L-7; L-14, L-16
file size L-2
file type L-2
opening L-3
random access L-7
random address (expression) L-8
sequential access L-4
sequential byte access L-7
types of elements in -- L-4

data pointer 1-2; 1-4
default format H-7
device expression H-12
dimension E-2
direct mode 8-9; J-S
dimensioning, strings F-l
drive number suffix L-1

E-format H-3; 0-1
endmark L-4 ... L-7
ENTERING A BASIC PROGRAM B-6 .•• B-8
ERROR TRAPPING AND RECOVERY M-9 ••• M-10
EXECUTION AND CONTROL FLOW J-l
exponent 0-1
exponential format
expression, numeric
expression, string

•

,

,

field width H-4
file block L-2
file buffer A3-2
file header table A3-3
file name L-l
file number L-3
file pointer L-7; L-14, L-l6
file size L-2
file type L-2
Floating Point Board (FPB) BASICs 0-13; 0-7, 0-11
FOR-NEXT LOOP, THE J-7 .•. J-ll

- NORTH STAR BASIC - A5-2



BASIC TOPICS INDEX (Continued)

body of -- J-7
control variable J-7
exiting from nested loops J-ll
limit value J-7
nesting J-9
optional control var iable in NEX1' J-10
step value J-7

format specification H-4
FORMATTED PRINTING H-3 ... H-8

allowable formats (chart) H-6
format characters H-7

free format B-3
FUNCTIONS K

built-in K-l ... K-7
string F-3
user -- K-B ... K-ll

function call K-8
mul ti-line K-10
names K-B
numeric parameters K-9
single-line K-8
string parameters K-9

hexadecimal C-17

I-format H-4
IMPLEMENTATION NOTES A3
index number E-l

justification, right H-5

LINE EDITOR, THE M-13 ... M-19
new line M-13
old line M-13
specifics and functions M-15 ... M-19

line length 0-4; C-18
line number 8-5, 8-10; J-2
LOADING BASIC B-1

MACHINE LANGUAGE SUBROUTINES M-4 ••• M-5
mantissa D-1
maximum length F-l: F-7
memory size 0-2
memory usage during program execution A3-5
MULTIPLE I/O DEVICES H-12 .•• H-13

nesting
of FOR-NEXT loop J-9
of IF statements J-3
of subroutines J-17

new line M-l3
NON-STANDARD VERSIONS OF BASIC 0-12 ...0-13

- NORTH STAR BASIC - AS-3



,
c

.,

,

,

BASIC TOPICS INDEX (Continued)

null str ing F-l
numbers D

old line M-13
open-ended substring F-3
operators

arithmetic 0-4
boolean D-5 ... D-6
numeric 0-4 ••• 0-6
numeric, order of evaluation D-6
relational 0-4 ••• D-5
string F-3

output data list H-l

paging (video) 0-4
PERSONALIZING BASIC 0-2 ••. 0-11
precedence D-6 ... D-7
precision, numeric 0-1; 0-13
print-head table A3-2
program B-6; 8-9

internal form of -- A3-4
-- pre-processing A3-3

program/data area C-17; G-l
program line 8-6; B-Ie
program mode 8-9

random address (expression) L-8
range, numeric D-3
regular format H-3
relocation of BASIC 0-12

scientific notation 0-1
sector, diskette L-2
sequential execution J-l
shrinking BASIC 0-6
SPECIAL ENTRY POINTS 0-1
statement B-9
strings F

assignment to substrings and -- F-S .•. F-7
comparisons F-4
compatibility with other BASICs N-l
current length F-2; F-7
functions F-3
maximum length F-l; F-7

SUBROUTINES J-lS ••. J-16
SUBROUTINES, MACHINE LANGUAGE M-4 ••• M-S
subroutines, nesting J-17
subscript E-l
substring F-2 •.• F-3

open-ended -- F-3
interval F-2

-- notation F-2

- NORTH STAR BASIC - AS-4

•



BASIC TOPICS INDEX (Continued)

truncation E-l: F-5
turnkey startup of BASIC
typing to BASIC B-2

O-B

upper case bias
user-functions
USING ARRAYS E
USING NUMBERS D
USING STRINGS F

of BASIC B-2
K-B •.•K-ll

value, numeric 0-3
variable

-- name 0-3, F-l
simple -- 0-3 ... 0-4
numeric -- 0-3
string -- F-l
string --, dimensioning of F-l

zero-element E-l

- NORTH STAR BASIC - A5-5



,

BASIC KEYWORD INDEX

APPENDIX 6

This is an index of the statements, commands, and functions in
North Star BASIC, and is included to facilitate the manual's use
by experienced programmers needing to look up specific
information in a hurry. Page number references follow the
convention set in APPENDIX 5; refer to that APPENDIX if you are
unfamiliar with the format.

ABS K-2
APPEND C-ll
ASC K-3
ATN K-3
AUTO C-6

BYE C-20

CALL K-6, M-4
CAT C-7
CHAIN M-8
CHR$ K-3, F-7 ... F-8
CLOSE L-13
CONT C-15, J-5 .•. J-6
CONTROL-C C-13
COS K-3
CREATE L-10

DATA I-I
DEF K-12
DEL C-2
DESTROY L-ll
DIM G-l, E-2, F-l

EDIT M-15
END J-6
ERRSET M-ll
EXAM K-6
EXIT J-14, J-10
EXP K-3

FILE K-5
FILL M-l
FNEND K-14
FOR J-12
FREE K-6

GOSUB J-17
GOTO J-2

IF ... THEN ... ELSE J-3
INCHAR$ K-4
INP K-5; H-10

-,

- NORTH STAR BASIC - A6-1



BASIC KEYWORD INDEX (Continued)

INPUT H-9
INPUT1 H-11
INT K-2

LEN K-3, F-7
LET G-4
LINE C-1B
LIST C-1
LOAD C-10
LOG K-2

MEMSET C-17

NEXT J-13
NOENDMARK L-7, L-9, L-16
NSAVE C-9

ON ... GOTO J-4
OPEN L-12
OUT M-3

·
;,

•.'· '• •,

·.

, .

PANIC
PRINT
PSIZE

BUTTON
H-1
C-16

(CONTROL-C) C-13
"

Ir
READ 1-2
READ. L-14, L-4
REM G-3
REN C-4
RESTORE 1-4
RETURN

sUbroutines J-16; J-18
user-functions K-13

RND K-5
RUN C-12, 1-4

SAVE C-B
SCR C-3
SGN K-2
SIN K-3
SQRT K-3
STOP J-5
STR$ K-4

TAB K-6; H-5
TYP K-5: L-5

VAL K-4

WRITE# L-16: L-4

- NORTH STAR BASIC - A6-2

,
"

"

.~
.,
1


